Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron

Mirosław Szala*, Mariusz Walczak¹, Tadeusz Hejwowski¹

¹ Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, Lublin 20-618, Poland
* Corresponding author’s email: m.szala@pollub.pl

ABSTRACT
The study presents the results of cavitation erosion (CE) resistance of two NiCrSiB self-fluxing powders deposited by oxy-acetylene powder welding on cast iron substrate grade EN-GJL-200. The mean hardness of deposits A-NiCrSiB, C-NiCrSiB is equal to 908 HV, 399 HV and exceeds those of EN-GJL-200 and X5CrNi18-10 reference specimens 197 HV and 209 HV, respectively. To study CE, the vibratory apparatus has been used and tests were conducted according to the ASTM G32 standard. Cavitation eroded surfaces were examined using a profilometer, optical and scanning electron microscopy. The research indicated that the CE resistance, expressed by the cumulative mass loss decreased in the following order C-NiCrSiB > A-NiCrSiB > X5CrNi18-10 > EN-GJL-200. Therefore, hardfacings were characterised by lower cumulative mass loss, in turn, higher CE resistance than the reference sample and therefore they may be applied as layers to increase resistance to cavitation of cast iron machine components. Results indicate that in the case of multiphase materials, hardness cannot be the main indicator for CE damage prediction while it strongly depends on the initial material microstructure. To qualitatively estimate the cavitation erosion damage (CEₜ) of NiCrSiB self-fluxing alloys at a specific test time, the following factors should be considered: material microstructure, physical and mechanical properties as well as surface morphology and material loss both estimated at specific exposure time. A general formula for the CEₜ prediction of NiCrSiB deposits was proposed.

Keywords: surface engineering, NiCrSiB, cavitation erosion, hardness, powder welding, stainless steel, cast iron, hardfacing, surface roughness

INTRODUCTION
Cast iron still is one of the most popular materials applied for the manufacturing of cast components for fluid machinery. It is known that pump casings, valves parts and impellers are prone to deterioration due to not only wear, corrosion, slurry- and/or solid-particle erosion but also can be deteriorated by cavitation erosion [1–3]. From the mentioned above wear processes the cavitation erosion (CE) has an overly complex nature. Overall, the CE phenomenon is described as a material degradation process relying on harmful fluid action initiated by pressure fluctuations in the liquid. When the liquid pressure drops, the vapour can grow, and as the pressure increases, the vapour bubbles implode. The resulting emission of shock waves and liquid-jet cause degradation of a solid material [4]. Though the CE damage mechanism has primally mechanical nature, it can be intensified by the working fluid corrosive environment, presence of solid-particle, elevated temperature action alone or synergistic interactions between mentioned above deterioration processes [5–7]. Unfortunately according to the literature of the subject [8–10], cast iron has relatively low CE resistance. On the contrary stellites (cobalt-based alloys) [11], stainless steels [12], aluminium bronzes [13] or shape memory alloys [14] present an elevated resistance to CE.
Worn ferrous machine components, depending on the cost analysis are replaced by new parts or regenerated. Thus the broad range of surface engineering techniques likewise induction hardening [15], thermal spraying [16,17], conventional overlay welding and cladding [18,19], wet (underwater) welding [20,21] or surface alloying [22,23] are utilised. Literature reports that the most typical materials for regenerating or prolonging the operation time of cast iron machine parts are polymers [24,25], metal alloys [26,27] or different composites [28,29]. From the broad grades of metallic materials, the nickel alloys present promising applicability to cast iron workpieces [26]. The self-fluxing nickel alloys Ni-B-Si and Ni-Cr-B-Si can be deposited by different methods likewise oxy-acetylene powder welding [30], plasma arc welding [26,31], laser cladding [32], flame spraying [33,34], HVOF [35,36]. The low melting point and high substrate wettability guarantee effective deposition of NiCrSiB on different metallic substrates likewise steel [37], Ti6Al4V titanium alloy and cast iron [26,34].

The self-fluxing nickel alloys have a complex microstructure dominated by nickel-based solid solution, eutectics e.g. Ni$_3$B, Ni$_5$Si$_3$, chromium carbides mainly Cr$_2$C$_6$ and Cr$_7$C$_3$, borides or complex chromium carboborides [30,35,38]. Furthermore, usually deposits hardness increases as the content of chromium, boron, silicon and carbon [38]. Thus the field of application of nickel-based self-fluxing alloys includes mainly fabrication of wear-resistant coatings operated in metallurgical, mining and oil-extracting, energy, glass and chemical equipment, stamping and pressing equipment, automotive and boat parts, gas-pumping devices, agricultural technology, etc [39]. Thanks to the microstructure and mechanical properties nickel-based self-fluxing alloys present promising behaviour in the corrosive environment [34], in sliding wear applications [40], at high-temperature applications (especially with Mo addition) [41,42]. However, unfortunately, NiCrSiB self-fluxing alloys CE resistance is not completely presented by the professional literature. Generally, the reports on CE behaviour of NiCrSiB-based deposits are scant and the diversity of deposition methods makes it difficult to classify their CE resistance. Exemplary the Wang et al. [43] report on poor resistance to cavitation of YSZ-NiCrSiB composite coatings fabricated by atmospheric plasma spraying. Furthermore, Kekes et al. [36] report that CE material loss of HVOF WC-Co/Cr - NiCrFeB-SiC coatings are decelerated by the increase of nickel-based metallic phase and pure metallic coating i.e. NiCrSiB-type has superior CE resistance than WC-CoCr cermet. Similarly Wu et al. [44] report on higher CE resistance of nickel-based self-fluxing alloy than AISI 304 stainless steel, which agrees with the results given in our previous study [45]. Therefore, due to the diversity of the chemical composition of nickel self-fluxing alloys and a variety of deposition methods, there is a demand to investigate the CE behaviour of NiCrSiB deposits. Especially oxy-flame powder welding seems promising to prevent and regenerate the cast iron components operated in a CE environment. Moreover, to fully understand the CE mechanism of metallic materials, the relationship between microstructure, hardness and surface roughness damage must be analysed.

This paper aims to investigate the factors influencing the CE behaviour of the NiCrSiB oxy-acetylene powder welds. The analysis was conducted concerning the reference structural materials i.e. grey cast iron (EN-GJL-200) and stainless steel (X5CrNi18-10).

MATERIALS AND METHODS

The NiCrSiB hardfacings were deposited using the oxyacetylene torch dedicated to powder welding. The workpiece (grey cast iron grade EN-GJL-200) was heated with the torch, then the powder was introduced into the gas stream from the integral powder hopper and transferred to the workpiece through the flame to obtain 3-4 mm thick hardfacings. Two different commercial Kennametal Stellite feedstock powders were used, see Table 1. Therefore, deposits differ in chemical composition, hardness and microstructure. The microstructure of NiCrSiB hardfacings was studied in polished metallographic specimens using a scanning electron microscope (SEM). Weld deposits hardness was measured using Future-Tech FM800 according to ISO 6507 standard and at the latest fifteen indentations were made to achieve statistical accuracy. Prior cavitation erosion (CE) testing specimens were machined to obtain dimensions of \varnothing25x10 mm and roughness of $S_z<0.06$ μm and $S_z<0.72$ μm. CE investigations were
conducted in compliance with the ASTM G32 standard through a vibratory cavitation apparatus using the stationary specimen method [46]. The schematic drawing of the test rig is shown in Figure 1. To perform the tests, the polished specimen surface was positioned 1±0.05 mm from the horn tip in a cooling bath filled with distilled water maintained at 25°±2°C. Total test time equals six hours. Specimens were weighed with an accuracy of 0.1 mg to measure the mass loss as a function of the cavitation time. The CE characterisation was carried out for two grades NiCrSiB powder-weld deposits (see Table 1) and two reference materials namely cast iron grade EN-GJL-200 (parent metal) and stainless steel grade X5CrNi18-10, AISI 304 (popular reference material used in CE testing). During the selected CE test time intervals damaged surfaces were characterised using the scanning electron microscope and stereoscope optical microscope Nikon SMZ 1500. To better understand the CE behaviour of NiCrSiB hardfacings, eroded surfaces were investigated using Hommel-Etamic 3D T8000 RC120-400 profiler therefore 3D surface morphology and 2D roughness profiles were measured according to ISO 25178 and ISO 4287 standards.

RESULTS AND DISCUSSION

Based on the analysis of metallographic investigations done using SEM and analysis of the cavitation erosion (CE) curves followed by the profilometric measurements allow confirming the effect of microstructure on the CE process. First of all, the microscopic investigation supports the literature data information regarding the microstructure of the coating [30,48]. Oxy-acetylene deposits microstructures consist of a relatively ductile Ni-based matrix with various amounts of hard particles (Fig. 2). Sample A-NiCrSiB contains much more percentage of hard phases than the C-NiCrSiB sample (Table 1), which directly derives from the chemical composition of feedstock powders. It is known that chromium, boron, carbon favours the creation of hard phases, therefore, the microstructure of C-NiCrSiB contains fewer hard phases but is mainly strengthened by the predominant hard phase which is Ni3B [38].

Moreover, in the case of sample A-NiCrSiB, hard particles are present in a form of agglomerates and particle clusters. Both hardfacings characterise the minimal presence of pores. The microstructure strongly influences the mean hardness and wide scatter of hardness, visible in Figure 3. The mean hardness of A-NiCrSiB coating (908 HV0.05) exceeds two times those reported for C-NiCrSiB (399HV0.05) which, in turn, is harder than reference specimens made of cast iron (197 HV30) and stainless steel (209 HV30). Due to its homogenous austenitic microstructure, stainless steel reports a reduced spread of hardness results, even tested under different loads [49,50]. Hardfacings have a much more complex microstructure containing different rations of hard to soft phases which increases the spread of hardness measurements.

Both hardness and microstructure are crucial for the wear performance of metallic materials. Analysis of the eroded surfaces (Fig. 5) and CE curves (Fig. 4) indicates that soft cast iron definitively has inferior CE resistance. Mass loss of cast iron is more than 10-times higher than

Table 1. Nominal chemical composition of feedstock powders and hardness oxy-acetylene powder welds according to manufacturer data [47]

<table>
<thead>
<tr>
<th>Specimen code</th>
<th>Chemical composition, wt%</th>
<th>Hardness, HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cr</td>
<td>B</td>
</tr>
<tr>
<td>A-NiCrSiB</td>
<td>17.0</td>
<td>3.6</td>
</tr>
<tr>
<td>C-NiCrSiB</td>
<td>7.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>
NiCrSiB hardfacings and X5CrNi18-10 specimens. Therefore, oxy-acetylene powder welds positively prevent the cast iron substrate from erosive loss. Moreover, erosion resistance of NiCrSiB deposits exceeds those reported for X5CrNi18-10 reference specimen (taking into account the cumulative mass loss after 6h). On the other hand, in the case of the NiCrSiB hardfacings, A-NiCrSiB presents higher mass loss than softer C-NiCrSiB. This derives from the properties of investigated materials that affect CE behaviour.

Figures 5 and 6 show the differences in eroded surfaces morphologies. Comparative analysis of the hardness and time-dependent erosion mass loss confirms the general influence of microstructure and hardness on cumulative erosion mass loss. It is known, that the CE process of metallic materials can be divided into four main stages [4,51]: incubation, acceleration, deceleration and terminal periods which are read from the cavitation curves. The analysis of CE plots confirms high mass loss of cast iron at 6h and presence of acceleration, deceleration and terminal CE phases (incubation period is negligible), see Fig. 4. Cast iron microstructure contains the ferritic-perlitic matrix and soft graphite flakes. Optical microscope investigations are well visualised (Fig. 5) much severe surface pitting for cast iron than for other tested materials. SEM observations confirm that erosion is initiated by the removal of the graphite phase (Fig. 6a) which follows observations of Chmiel et al and Kim et al. [52,53]. This opens access for cavitation action to aggressively penetrate the metallic matrix. This result in erosion acceleration by detaching the ferrous matrix, which is well visualised in Figure 6a.

On the other hand, stainless steel has a clear incubation period of up to 1h of exposure, see Figure 4. At this stage, due to the accumulated internal stresses across the surface layers, plastic deformation initiated and the material surface...
started to deform (work hardening) [54]. Following this incubation period, the acceleration state of erosion can be read. Stainless steel grade X5CrNi18-10 has a microstructure dominated by austenite. Microscopic analysis indicates that severe plastic deformation of surface, visible twinning and detachment of fatigue deformed surface material (Fig. 6b). These results are similar to findings reported for CE behaviour stainless steel [55,56].

NiCrSiB self-fluxing deposits erosion behaviour differs from those presented for reference materials. The initial states of CE of A-NiCrSiB present accelerated mass loss which refers to hard particle and agglomerate clusters detachment taking place due to their poor cohesion (Fig. 6c). However, after 2h of testing the erosion rate decreases. At further stages of erosion, the mass-loss rate slows down, and it seems that the hard matrix effectively withstands the cavitation loads. The final mass loss noted at 6h of testing, is comparable to C-NiCrSiB. Nevertheless, C-NiCrSiB sample CE behaviour presents advanced plastic deformation at the initial stages of erosion (Fig. 6d). Less rich in hard phases structure of C-NiCrSiB successfully mitigates the material loss by absorbing the CE load due to surface deformation. Further, the mass-loss rate increases (Fig. 4) while the fatigue-deformed material is detached. Therefore, even the initially sample C-NiCrSiB has lower materials loss than A-NiCrSiB, after 6h of exposure their cumulative mass losses are at a comparable level.

The microstructure of metallic materials plays a crucial role in the time-dependent erosion behaviour of metallic materials. Even the high differences in the hardness of nickel deposits and reference materials, both cast iron and A-CrNiSiB...
as well as stainless steel and C-NiCrSiB presents comparable to each other characteristics of CE erosion wear behaviours. Of course, the rate of CE failure, and differs and it seems that it is controlled by material properties, likewise hardness. The operation performance of the machine components strongly correlates with the surface roughness. Therefore many authors consider the surface roughness as a crucial indicator of metallic surface industrial usability [57–59]. The same as for many other deterioration processes, the rate of CE damage can be evaluated by surface roughness development analysis. This was described in our previous papers on plastics [24], composites [55], coatings [60] and metallic materials [11]. Therefore, in the case of the powder welded NiCrSiB alloys the CE damage was evaluated by profilometric measurements. The analysis of the results given in Figs. 7 and 8, allows to state that eroded surfaces morphology and roughness parameters supplement the erosion behaviour. Specimens that have much complex microstructure (likewise A-NiCrSiB and cast iron) presents higher S_z and lower S_a roughness parameters than specimens that have much homogenous microstructure (likewise C-NiCrSiB and stainless steel). Selective phase detachment and low surface deformation result in the growth of deeper pits observed for A-NiCrSiB while in the case of C-NiCrSiB specimen the relatively soft matrix undergoes relatively uniform surface deformation and lesser pitting (Fig. 7). It seems that the ratio of S_a to S_z parameters measured at specific exposure time could be used for the characterisation of cavitation damage too.

The literature presents different attempts for estimating CE resistance of material systems [54,61–63]. However, there is no formula reported for NiCrSiB self-fluxing deposits. Therefore, the analysis of the results presented in the current study allows proposing the qualitative relationship for estimating the cavitation erosion damage (CE_d) of a selected group of metallic materials, estimated at a specific exposure time, given by formula (1).

$$CE_d(t) = f(S, L, M, P)$$ (1)
where: material microstructure (M) – characterised by a number of phases, structure refinement and homogeneity, phase morphology, porosity, chemical composition, etc; physical and mechanical properties (P) – described by hardness, Young modulus, plasticity, toughness, cohesion, thermal conductivity, corrosivity etc; surface morphology at specific test time (S) – characterised by surface roughness, non-uniformities, surface development rate etc; material loss (L) evaluated at specific cavitation exposure time – mass loss, erosion rate, volume loss etc.

The proposed CE dependence qualitative relationship combines main input factors such as M and P combined with the indicators evaluated at specific exposure time, namely S and L. Of course, to select the scalar value CE must be verified by broader studies done for a range of NiCrSiB deposits. Generally, hardness is considered as a predominant factor used for the estimation of CE resistance of materials. However, this study shows that the ratio of cavitation erosion loss depends on both microstructure and hardness and these factors should be considered together. It seems that in the case of complex-microstructure materials, likewise NiCrSiB alloys, CE depends strongly on microstructure uniformity. Furthermore, to forecast the CE failure of specific materials, their in-process behaviour should be taken into account. Thus, not only mass loss but also...

Fig. 7. Surface morphology of NiCrSiB powder-welds measured after 6h of exposure to cavitation erosion: a) A-NiCrSiB and b) C-NiCrSiB

Fig. 8. Surface S_a and S_z roughness of damaged surfaces after 6h of cavitation (logarithmic scale of Y-axis)
the development of surface morphology should be included. Of course, each of the factors given in a proposed CE_d relationship should be selected with care and the formula will be validated for the set of self-fluxing NiCrSiB hardfacings.

CONCLUSIONS

The goal of the study was to investigate the factors influencing the cavitation erosion (CE) behaviour of the NiCrSiB hardfacings deposited by oxy-acetylene powder welding on cast iron. The analysis was conducted in relation to the reference structural materials i.e. cast iron and stainless steel. The results of the study lead to the following conclusions:

1. The microstructure of oxy-acetylene powder weld NiCrSiB hardfacings consists of nickel matrix, eutectics and hard phases. This influences the hardness and CE behaviour of deposits. The mean hardness of A-NiCrSiB, C-NiCrSiB, EN-GJL-200 and X5CrNi18-10 were 908 HV, 399 HV, 197 HV and 209 HV, respectively.

2. The research indicated that the cavitation erosion (CE) resistance, expressed by the cumulative mass loss after 6h of testing, decreased with the following order C-NiCrSiB > A-NiCrSiB > X5CrNi18-10 > EN-GJL-200. Therefore, oxy-acetylene powder-welds deposited on cast iron successfully prevent it from erosive deterioration.

3. The microstructure of NiCrSiB self-fluxing alloys play a crucial role in the time-dependent CE behaviour of metallic materials. Thus, in the case of multiphase materials, hardness cannot be the main indicator for CE prediction while it strongly depends on the initial material microstructure.

4. To qualitatively estimate the cavitation erosion damage (CE_d) of a selected group of metallic materials (likewise NiCrSiB self-fluxing alloys) at specific test time, the factors likewise, material microstructure (M); physical and mechanical properties (P); and both surface morphology (S) and material loss (L) given at specific test time, can be combined in the following formula: $CE_d(t) = f(S, L, M, P)$

Each of the factors included in a proposed relationship should be optimised and the formula must be validated for the broader range of self-fluxing NiCrSiB deposits.

REFERENCES

12. Roa C.V., Valdes J.A., Larrahondo F., Rodriguez

