
101

INTRODUCTION

Food Recognition plays a signifi cant role in
one’s life, as it helps to know what to expect
from diff erent food items. It also refl ects in the
digital world; there are many services online
which depend on food categorization. For In-
stance, Food recognition can help patients to
calculate their calorie intake daily. Also, this
enables food distribution companies to catego-
rize food items and manage their delivery ac-
cordingly. However, most current solutions rely
on nutrition experts [5] or Amazon Mechanical
Turk [6] to label various dishes.

It is a challenging problem to categorize food
items, as food does not have many discriminative
features. The distinguishing characteristics in the
food items are apparently hidden. For Example,
Humans can be distinguished by the appearance
of their face and body as these characteristics can
be clearly compared. Consider a case of a mixed

salad; such patterns associating ingredients can-
not be found. Further, the nature of food often
diff ers based on various textures and colors of
its diff erent local ingredients. Thus, Food recog-
nition is a particular classifi cation task requiring
models that are able to exploit local components.
Many previous works used diff erent types of fea-
ture mining to build a good categorization model.
Some of the works relied on weak supervised
models such as Random Forests [7, 8] and oth-
ers adopted discriminative mining of mid-level
components [9-16]. This work relies on building
a powerful model by using transfer learning.

In recent days, convolutional neural net-
works like VGGNET [2], RESNET [3], and
EFFICIENTNETS [4] have shown a signifi cant
impact in the area of visual recognition. How-
ever, these state-of-art architectures require enor-
mous amounts of data for training. Training the
model with fewer data may lead to overfi tting,
and the model will not be generalized. However,

Leveraging Transfer Learning to Identify Food Categories

Jyothi Vishnu Vardhan Kolla1, Poorna Chandra Vemula2*, Srinivasa L. Chakravarthy1,
Boya Shashidhar Naidu1, Dharmesh Patibandla1

1 Department of Computer Science, Gitam University, Vishakapatnam, India
2 Department of Computer Science, VIT University, Vellore, India
* Corresponding author’s e-mail: poorna883@gmail.com

ABSTRACT
In today’s scenario, recognition of pictured food dishes automatically has signifi cant importance. During the CO-
VID-19 pandemic, there was a decline in people visiting restaurants for their dietary requirements. So many res-
taurants started off ering their services online. This situation caused a demand for better categorization of food into
various categories on a large scale by companies that facilitated these services. It is challenging to congregate a
large dataset of food categories, so it is complex to build a generalized architecture. To solve this issue, In this pa-
per, domain-specifi c transfer learning is used to build the model using some standard architectures like VGGNET,
RESNET, and EFFICIENTNET family, which are trained on popular benchmark datasets such as IMAGENET,
COCO, etc. The similarity between the source and target datasets is calculated to fi nd the best source dataset, and
the one with the highest similarity is chosen for transfer learning. The solution proposed in this paper outperforms
some of the existing works on categorizing food items.

Keywords: domain similarity, transfer learning, fi ne-tuning, convolutional neural networks.

Advances in Science and Technology Research Journal 2021, 15(4), 101–109
h� ps://doi.org/10.12913/22998624/142738
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

Received: 2021.09.16
Accepted: 2021.10.18
Published: 2021.11.01

101

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

102

obtaining vast amounts of data is a complex task.
To tackle this issue, In this work, Transfer learn-
ing is adopted. Transfer learning is nothing but
using pre-trained weights from some state-of-the-
art architectures, which are trained on benchmark
datasets like IMAGENET [17], COCO [18].
Transfer learning can be used either as a feature
extractor [19-21] or by unfreezing some layers
by fine tuning [22, 23] the model, which involves
altering the learning rate. Due to these advan-
tages, extensive works were done on understand-
ing transfer learning [28, 29]. In this paper, as the
problem of food recognition is being dealt with,
architectures that were pre-trained on IMAGEN-
ET [17] are used via fine-tuning as the similarity
between IMAGENET [17] and the dataset [26]
being used is high when calculated using a metric
called earth mover’s distance [24, 25]. The later
sections of this work are organized as follows.
The details of the dataset [26] used in this paper
are described in section 2. Methodology, Experi-
ments & Environment setup, results are described
in sections 3, 4, and 5, respectively. In the end,
Section 6 concludes this work.

DATASETS

In this paper, we are using a dataset collected
by Lukas Bossard et al. [26], where they have
chosen images for a total of 101 popular dishes.
This dataset consists of 750 training images and

250 test images for each class, amounting to a
sum of 101’000 real-world images. Training im-
ages are not cleaned and contain some level of
noise, mainly in the form of bright colors and in-
correct labels. This is done on purpose to build a
robust Deep learning algorithm that can be able
to work on such weakly labeled images and scale
up as the number of classes to be recognized in-
creases. Images were scaled to have a side length
of utmost 512 pixels. The dataset includes very
diverse but also semantically and seemingly
similar food classes. These images are collected
by downloading images from foodspotting.com,
which enables users to capture images of the food
they are eating and also add information such as
type of food and place online. So, this dataset pro-
vides us with an opportunity to work with real-
world food images. Some of the Random images
from the dataset are shown in Figure 1.

METHODOLOGY

Data Augmentation and Visualization

Initially, as we will be dealing with the ar-
chitectures which favor the images in resolution
(224, 224, 3), we have resized the images into
those dimensions. As the Architectures VGGNET
[2] and RESNET [3] do not contain any Normal-
ization layers in them, we have normalized the
images before feeding them to these networks.

Fig. 1. Shows some random images from the dataset

103

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

In contrast, EFFICIENTNET Family has a Nor-
malization layer included in it, so we have fed
the raw resized images to EFFICIENTNET.
Data Normalization is a technique of Rescaling
the pixels in the image to be in the range of 0 to
1; this is because neural networks prefer all the
Data Points being fed to them on the same scale.
Normalization is done as shown in Eq. (1), where
xscaled denotes the normalized image and x denotes
the image which we are normalizing, xmin denotes
the smallest pixel in the image, and xmax denotes
the largest pixel in the image.

𝑥𝑥𝑥𝑥scaled =
𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (1)

As images of Food items do not contain rich
spatial information like other types of image
Data like faces, animals to make our model more
accurate in the time of testing, we have generated
various types of new images in the training Data
set with the help of Data augmentation. Some
of the augmentation techniques we used include
Flipping images horizontally, rotating the imag-
es by some random angle, increasing the width
and height of the images randomly, and finally
zooming some of the images Randomly.

Model Architectures

VGGNET

VGGNET was first introduced in the year
2014. It has secured first place in the task of lo-
calization and second place in classification in the
IMAGENET challenge, which was conducted that
year. This architecture was built by a team called
the visual geometry group from the oxford uni-
versity. One of the very interesting aspects of this
network is that all the parameters are constant,
except the depth dimension in the filters, which

is gradually increased with the depth of the net-
work. Many variants of VGGNET networks are
proposed by the visual geometry group, whose
basic idea remains the same and differs in terms of
the number of layers. In our work, we have experi-
mented with VGG19 to train our model and the re-
sults obtained are promising, which are shown de-
tailly in section 5. The hierarchy of the model is as
follows: To simplify the explanation, we explain
the model in terms of blocks, where each block
is separated by a Maxpool layer. Firstly, VGG16
starts with an input layer that feeds the model with
images in batches. Block1 consists of two convo-
lutional layers, each containing a filter size of 64
and a kernel_size of 3X3. As explained above, the
features extracted by these two convolutional lay-
ers are subjected to the Max Pooling layer, where
the most important features are captured. Block2
consists of two convolutional layers, each contain-
ing 128 filters, followed by Block3, which consists
of three convolutional layers containing 256 fil-
ters each. Block4 and Block5 both consist of three
convolutional layers with a filter size of 512. As
mentioned earlier, all these Blocks are separated
by a max-pooling layer, and all the other param-
eters remain constant throughout the network. The
architectures of VGG16 and VGG19 are shown in
Figure 3 and Figure 4.

RESNET

This architecture was built by a group of re-
searchers from Microsoft. Its primary idea was
to ease the complexity of training deep convo-
lutional neural networks; this was proved by the
fact even though it was eight times as large as
VGGNET and yet had a lower complexity. An-
other important achievement is that this network
solved the problem of degrading training and test-
ing error rates with an increase in the number of
stacked layers by mapping features to a Residual

Fig. 2. Representation of VGG19 Architecture

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

104

function and using shortcut connections between
the layers. These observations and proofs are
explained in a detailed and clear way in their
paper [3]. We have used RESNET with 152 lay-
ers which were trained on the IMAGENET with
fine-tuning, and the results obtained were very
good. To understand the architecture, let us use
the terminology of blocks which we used while
explaining VGGNET; the architecture starts with
a convolutional layer with a kernel size of 7X7
with stride 2 consisting of 64 filters and then fol-
lowed by a Maxpool layer with a pool size of
3X3 and a stride of 2. Block 1 starts with con-
volutional layers where the first consists of 64
filters with a kernel_size of 1X1 and the second
consists of 64 filters with a kernel size of 3X3.
Finally, the third one will have 256 filters with a
kernel size of 1X1; this hierarchy repeats a total
of 3 times, so Block 1 contains a total of 9 layers.
Block2 begins with a convolutional layer with a
filter size of 128 and a kernel size of 1X1, fol-
lowed by another with a filter size of 128 and a
kernel size of 3X3, then by another with a kernel
size of 1X1 and 512 filters; this pattern repeats
eight times which in total produces 24 layers in
block2. Block 3 starts with a kernel size of 1X1
and 256 filters, which is then followed by a layer
of kernel size 3X3 consisting of a total of 256
filters and the third, which is similar to that of the
first one except that the number of filters is 1024,
this order repeats for 36 times thus block3 itself
contains 108 layers of the architectures’152 lay-
ers. At last, Block4 follows the pattern of a 1x1
kernel size with 512 filters, 3X3 kernel size With
512 filters, and a 1X1 kernel size with 2048 fil-
ters which is repeated a total of 3 times. Finally,
the feature maps obtained are subject to a Global
Average pooling layer and connected to a dense
layer with softmax as the activation function.

Efficient-Net-Family

This was developed by the Google Ai re-
search team. In this work [4], they have shown
how effective a model can be built if the net-
work’s depth, width, and resolution are balanced
using a simple compound coefficient. This com-
pound is very simple but very effective; suppose
if we want to utilize 2^N times more computa-
tional power, then we can simply increase the net-
work’s width by W^N and height by H^N, and the
input image size by S^N. The idea is very logical
because if the input size of the image is increased,
we have to increase filter size to extract more fea-
ture maps and increase the depth to obtain more
receptive field; in simple words, the important as-
pects like depth, width, resolution are uniformi-
zed in a constant ratio, and these set of models
from Efficient-Family are far more efficient and
faster than most of the architectures proposed till
date. The two main observations found in this
work [4] is that scaling up any one of the dimen-
sions that are width, depth, the resolution will
increase the model’s accuracy. Still, this rate of
increase diminishes after a while. Another obser-
vation is that in order to obtain good accuracy and
efficiency, it is essential to balance all the dimen-
sions width, depth, and resolution of the model
architecture. The baseline architecture of EFFI-
CIENTNET follows the pattern as follows, let
us understand the architecture in terms of blocks
as we did with previous architectures. Firstly
Block1 contains a Convolutional layer with a
kernel size of 3X3 consisting of 32 channels;
Block2 contains a mobile inverted bottleneck
convolutional layer with a kernel size of 3X3
and 16 filters. Block3 consists of two mobile
inverted bottleneck convolutional layers with
a kernel size of 3X3 and 24 filters. Similarly,
Block 4 contains two mobile inverted bottleneck

Fig. 3. Representation of RESNET-152 Architecture

105

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

convolutional layers with a kernel size of 5X5
and 40 filters. Block 5 consists of three mobile
inverted bottleneck convolutional layers, each
with a kernel size of 3X3 and 80 filters. Block
6 contains three mobile inverted bottleneck con-
volutional layers, each with a kernel size of 5X5
and 112 filters. Block 7 consists of four mobile
inverted bottleneck convolutional layers, each
with a kernel size of 5X5 and 192 filters. Block
8 contains a mobile inverted bottleneck convo-
lutional layer with a kernel size of 3X3 and 320
filters. Block 9 consists of a convolutional layer
with a kernel size of 1X1 and a Pooling layer,
FC layer with 1280 filters. The components W,
H, S are then fixed as constants, and the baseline
model is scaled up to build a family of models
EFFICIENT B1 to EFFICIENT B7.

Domain similarity

Consider there is a source domain S and a tar-
get domain. The distance separating two images,
s ∈ S and t ∈ T, is defined as the Euclidean dis-
tance between their feature representations:

𝑑𝑑𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡) =∥ 𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠) − 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡) ∥ (2)

Where g(·) denotes the feature extractor for
an image, to better calculate the similarity be-
tween the images, the feature extractor g(·) needs
to extract high-level information from images in
an unbiased and generic way. As a result, In this
work, we are using g(.) as the extracted features
from the last before the layer of a RESNET-101
trained on the JFT dataset. Here, g(s) and g(t)
denote the feature extractor for an image on the
source and target datasets, respectively.

In many cases, better transfer learning perfor-
mance can be achieved by using more images. For
the purpose of simplicity, in this study, we ignore

the effect of domain scale (number of images). In
particular, we normalize the number of images in
both the source and target domain. As examined
by some previous works, transfer learning per-
formance increases logarithmically with training
data. This suggests that the performance increase
in transfer learning emanating from more training
data would be unimportant when we already have
a large enough dataset (e.g., ImageNet). There-
fore, ignoring the domain scale is a reasonable as-
sumption that simplifies the problem. Our defini-
tion of domain similarity can be generalized to take
domain scale into account by adding a scale factor.
However, we found that ignoring the domain scale
already works well in practice.

Under this hypothesis, transfer learning can
move images from the source domain S to the tar-
get domain T. The image distance Eq. 1 can be de-
fined as the work done by transferring an image to
another. Then, the distance between two domains
can be defined as the least amount of total work
needed. Earth Mover’s Distance (EMD) is used to
calculate domain similarity as per this definition.

To make the calculations more manageable,
further simplifications can be made by repre-
senting all image features in a category. This is
achieved by computing the mean of their features.
Consider, the source domain 𝒮𝒮𝒮𝒮 = ��𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖��𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚

and target 𝒯𝒯𝒯𝒯 = ��𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗��𝑗𝑗𝑗𝑗=1
𝑛𝑛𝑛𝑛

 . Earth Mover’s
Distance(EMD) can be calculated using the equa-
tion as shown below where fi,j denotes the data
point from source domain whereas di,j denotes
that of a target domain; m is the number of data
points in the source domain, and n denotes the
number of data points in the target domain.

𝑑𝑑𝑑𝑑(𝒮𝒮𝒮𝒮,𝒯𝒯𝒯𝒯) = EMD(𝒮𝒮𝒮𝒮,𝒯𝒯𝒯𝒯) =

=
∑  𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1,𝑗𝑗𝑗𝑗=1 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
∑  𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1,𝑗𝑗𝑗𝑗=1 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

(3)

Fig. 4. Representation of EFFICIENTB0 Architecture

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

106

Prefetching, multithreading, and
mixed precision-scaling

These concepts come from the core of com-
puter science, and these are not at all related to
any of the deep learning or machine learning al-
gorithms. However, these play an important role
in the training process of the algorithm by speed-
ing up the process up 3 to 4 times the actual time
required. If the model is being trained without
prefetching, firstly, the CPU prepares a batch of
input, and then the GPU computes it, and after
that, the CPU again prepares another batch, and
the GPU performs computations. In contrast, if
prefetching is applied, the CPU will simultane-
ously prepare the batch of data while the GPU
is computing the present batch; in this way, the
GPU will be completely utilized except for the
time of transferring the data from CPU to GPU.
The process can be speeded up a lot more if we
can ensure that prefetching and preparing the data
is multithreaded. These three different types of
processes are illustrated pictorially in Figure 5.

Mixed precision scaling is nothing but using
tensors that are of both 16 bit and 32 bit. In order to
maintain stability, the outer layers of the model are
maintained as 32-bit float data type while the inner
layers are maintained as 16-bit float data type. This
drastically increases the performance because a
16-bit data type takes significantly less space than
a 32 bit but lacks stability. Thus by using mixed
precision scaling, we can leverage both the pros
and train the model much faster than actual.

EXPERIMENTS AND
ENVIRONMENT SETUP

Firstly, the dataset [26] was collected using
the TensorFlow data API; as the amount of data
that we are dealing with is huge, normally, train-
ing the model will not be that feasible. So as men-
tioned in the methodology section Prefetching,
multithreading, and mixed precision-scaling, we
have followed some advanced techniques to train
the model. When it comes to hardware, an Intel i7
processor with a ram of 16GB and a Tesla T4 GPU
with VRAM of 16GB was used to train all the
architectures that we have used in this work. As
EFFICIENTNET family already consists of a res-
caling layer embedded in them, it is not required
to manually rescale the image. As we have lev-
eraged the power of transfer learning, firstly, we
have experimented with EfficientnetB0 by freez-
ing all the layers except the output layer, which
is a fully connected layer with 101 neurons and
softmax as an activation function as we are deal-
ing with multiclass classification. The mathemati-
cal formulation of softmax is shown in the Eq. 4,
where xi denotes the input vector, and xj denotes
the output vector; finally, the model was compiled
with adam [27] optimizer with a learning rate of
0.001 with sparse_categorical_cross_entropy as
loss function. Then the model was fine-tuned as
suggested by other previous works [28, 29], as
the amount of training data was very high, all the

Fig. 5. Representation of prefetching and multithreading

107

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

layers in the pretrained EFFICIENTNET were
fine-tuned with a reduced initial learning rate of
0.0001; also, the learning rate was reduced by a
factor of 5 once the loss function stops reducing
for at least 2 epochs and this reduction of learning
will not go below 0.0000001.

Softmax (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =
exp(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)

∑  𝑗𝑗𝑗𝑗 exp �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗�
 (4)

The same training pattern was followed to train
and fine-tune the RESNET-125, VGG19 architec-
tures with the dataset [26] except that these models
do not have an rescaling layer embedded in them,
we have manually rescaled the batch of images be-
fore feeding them to the model. The mathematical
formulation of Rescaling is shown in the Eq. 1.

RESULTS

Of all the models used, EFFICIENTNET gave
the best results with an accuracy of 80%, which is
the best of all the architectures used, in terms of
both accuracy and efficiency with only 11 million

parameters. When it comes to RESNET-152, the
accuracy achieved is almost close to 80% (79.9%).
But in terms of efficiency and amount of time re-
quired to train the model, EFFICIENTNET is
much better than RESNET-152 as the number of
parameters in RESNET-152 is 60 million which is
about 6 times that of in EFFICIENTNET. VGG-19
is the worst performing among all the models, with
an accuracy of 74%. Moreover, the time required
to train and resource consumption is higher relative
to other models as the number of parameters is 144
million, which is double that of in RESNET-152
and around 13 times that of in EFFICIENTNET.
The training and validation errors of all these ar-
chitectures are shown in the below figures.

The accuracy we have obtained by fine-tun-
ing EFFICIENTNET and RESNET is better than
most previous works [26, 30]. To the extent of our
knowledge, the paper by Liu et al. [30] has a top
1% accuracy of 77.4%, which we have successful-
ly beaten in our work by applying the techniques
of transfer learning and fine-tuning on the archi-
tectures EFFICIENTNETB0 and RESNET-152,
which were trained on IMAGENET dataset.

Fig. 6. Accuracy and Loss functions of VGGNET

Fig. 7. Accuracy and Loss functions of RESNET

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

108

CONCLUSION

In conclusion, By using transfer learning, that
is, by utilizing pre-trained weights via fine-tuning of
some popular architectures such as RESNET, VGG-
NET, and EFFICIENTNET, the results obtained are
better than most of the previous studies to the extent
of our knowledge. Leveraging the power of transfer
learning, we can build robust models by finding the
right target dataset using domain similarity based
on the source dataset and using standard architec-
tures trained on this source dataset. Further studies
can include building a larger dataset by adding more
images in each category, also involving numerous
categories, and building a robust model which is
specialized in food categorization.

Moreover, we have performed fine-tuning
manually. However, as an extension, we can
make studies on how to dynamically unfreeze the
layers based on the image fed to the network rath-
er than manually unfreezing some of the layers
while fine-tuning, as layers are unfrozen dynami-
cally for each specific image due to which if the
pre-trained model has never seen the image, the
top layers will be unfrozen and if the pre-trained
model has already seen similar image then bot-
tom layers are unfrozen; as a result, the perfor-
mance of the model improves by a great extent.

REFERENCES

1. Cui Y., Song Y., Sun C., Howard A., Belongie S.
Large Scale Fine-Grained Categorization and Do-
main-Specific Transfer Learning. 2018;4109-4118.
DOI: 10.1109/CVPR.2018.00432.

2. Simonyan K., Zisserman A. Very Deep Convolu-
tional Networks for Large-Scale Image Recogni-
tion. 2014;1.

3. He K., Zhang X., Ren S., Sun J. Deep Residual
Learning for Image Recognition. 2016;770-778.
DOI: 10.1109/CVPR.2016.90.

4. Tan M., Le Q. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks; 2019.

5. Martin C.K., Correa J., Han H., Allen H., Rood J.,
Champagne C., Gunturk B., Bray G. Validity of
the Remote Food Photography Method (RFPM)
for Estimating Energy and Nutrient Intake in Near
Real‐Time. Obesity. 2012;20.

6. Noronha J., Hysen, E., Zhang, H., Gajos K.Z.
2011. Platemate: crowdsourcing nutritional anal-
ysis from food photographs. Proceedings of the
24th annual ACM symposium on User interface
software and technology.

7. Breiman L. Random Forests. Machine
Learning. 2001;45:5–32. https://doi.
org/10.1023/A:1010933404324

8. Ho T.K. Random decision forests. In: Proceed-
ings of 3rd International Conference on Document
Analysis and Recognition. 1995;1:278-282. DOI:
10.1109/ICDAR.1995.598994.

9. Doersch C., Gupta A., Efros A.A. Mid-Level Vi-
sual Element Discovery as Discriminative Mode
Seeking. NIPS. 2013.

10. Sun J., Ponce J. Learning Discriminative Part De-
tectors for Image Classification and Cosegmen-
tation, IEEE International Conference on Com-
puter Vision 2013, 3400-3407. DOI: 10.1109/
ICCV.2013.422.

11. Wang X., Wang B., Bai X., Liu W., Tu Z. Max-
margin multiple-instance dictionary learning.
NIPS. 2013.

12. Li Q., Wu J., Tu Z. Harvesting Mid-level Visual
Concepts from Large-Scale Internet Images. IEEE
Conference on Computer Vision and Pattern Rec-
ognition 2013, 851-858.

13. Endres I., Shih K., Jiaa J., Hoiem D. Learning Col-
lections of Part Models for Object Recognition.
CVPR. 2013.

Fig. 8. Accuracy and Loss functions of EFFIECIENTNET

109

Advances in Science and Technology Research Journal 2021, 15(4), 101–109

14. Juneja M., Vedaldi A., Jawahar C.V., Zisserman
A. Blocks That Shout: Distinctive Parts for Scene
Classification. IEEE Conference on Computer Vi-
sion and Pattern Recognition 2013, 923-930.

15. Singh S., Gupta A., Efros A.A. Unsupervised
Discovery of Mid-Level Discriminative Patches.
ECCV, 2012.

16. Yao B., Khosla A., Fei-Fei L. 2011. Combining
randomization and discrimination for fine-grained
image categorization. CVPR. 2011;1577-1584.

17. Deng J., Dong W., Socher R., Li L., Li K., Fei-Fei
L. ImageNet: A large-scale hierarchical image da-
tabase. IEEE Conference on Computer Vision and
Pattern Recognition 2009, 248-255. DOI: 10.1109/
CVPR.2009.5206848.

18. Lin T., Maire M., Belongie S.J., Hays J., Perona
P., Ramanan D., Dollár P., Zitnick C.L. Microsoft
COCO: Common Objects in Context. ECCV. 2014.

19. Razavian A.S., Azizpour H., Sullivan J., Carlsson S.
CNN Features Off-the-Shelf: An Astounding Base-
line for Recognition. IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops
2014, 512-519. DOI: 10.1109/CVPRW.2014.131.

20. Donahue J., Jia Y., Vinyals O., Hoffman J., Zhang
N., Tzeng E., Darrell T. DeCAF: A Deep Convolu-
tional Activation Feature for Generic Visual Recog-
nition. ICML. 2014.

21. Zhou B., Lapedriza A., Khosla A., Oliva A., Torralba
A. Places: A 10 Million Image Database for Scene
Recognition. IEEE transactions on pattern analysis
and machine intelligence. 2018;40(6):1452–1464.
DOI: 10.1109/TPAMI.2017.2723009.

22. Girshick R., Donahue J., Darrell T., Malik J. Rich
Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation. IEEE Conference on

Computer Vision and Pattern Recognition 2014,
580-587. DOI: 10.1109/CVPR.2014.81.

23. Oquab M., Bottou L., Laptev I., Sivic J. Learn-
ing and Transferring Mid-level Image Represen-
tations Using Convolutional Neural Networks.
IEEE Conference on Computer Vision and Pat-
tern Recognition 2014, 1717-1724. DOI: 10.1109/
CVPR.2014.222.

24. Rachev S.T. The monge–kantorovich mass trans-
ference problem and its stochastic applications.
Theory of Probability & Its Applications. 1985.

25. Rubner Y., Tomasi C., Guibas L. The Earth Mover’s
Distance as a Metric for Image Retrieval. Interna-
tional Journal of Computer Vision. 2004;40:99-121.

26. Bossard L., Guillaumin M., Van Gool L. Food-
101 – Mining Discriminative Components with
Random Forests. In: Fleet D., Pajdla T., Schiele B.,
Tuytelaars T. (eds) Computer Vision – ECCV 2014.
ECCV 2014. Lecture Notes in Computer Science,
Springer, Cham; 2014;8694. DOI: 10.1007/978-3-
319-10599-4_29

27. Kingma D.P., Ba J. Adam: A Method for Stochastic
Optimization. 2015.

28. Bengio Y. Deep learning of representations for unsu-
pervised and transfer learning. In ICML Workshop
on Unsupervised and Transfer Learning. 2012;1

29. Guo Y., Shi H., Kumar A., Grauman K., Si-
munic T., Feris R. SpotTune: Transfer Learn-
ing Through Adaptive Fine-Tuning. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2019, 4800-4809.

30. Liu C., Cao Y., Luo Y., Chen G., Vokkarane V.,
Ma Y. DeepFood: Deep Learning-Based Food
Image Recognition for Computer-Aided Dietary
Assessment. 2016.

