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INTRODUCTION

Analytical models of gears and gearboxes have 
one particular advantage over numerical models 
such as finite element analysis (FEA): they require 
a considerably shorter computational time. This 
results from that fact that far fewer equations must 
be solved. As a consequence, however, the level 
of details that can be modelled is more limited. 
The current trend regarding analytical and other 
models is to increase their accuracy. The review 
of the literature on analytical gear models shows 
that more recent studies focus, among others, on 
modelling gear tooth stiffness [1, 2], tooth damage 
[3, 4], macro geometry optimization [5], windage 
power losses [6], tooth root stress [7], tooth de-
flection [8], wear [9], friction and power loss [10], 
multi DOF models [11, 12]. Increasing the num-
ber of DOF is one of the fundamental directions in 
the development of gear models. 

The first gear model was developed by Tou-
plin in 1950; it had 1 DOF and consisted of a 

spring, equivalent mass and wedge [13]. Later in 
that decade, the models with tooth compliance 
were developed, with gears having 2 DOF. In or-
der to ensure more accurate prediction and mod-
elling of the gear dynamics, stiffness of shafts and 
bearings was added. As a result, the number of 
DOF could be increased to 3 or 4, which in 1970 
led to the creation of a model with 6 DOF [13]. In 
the 21st century, a gear model with 16 DOF [14] 
was developed. The review of the publications 
available in Science Direct reveals that there is an 
analytical model of single-stage spur gear with as 
many as 19 DOF [11]. 

Multi DOF analytical models can imitate the 
operation of all basic components, such as gears, 
shafts, bearings and couplings [14, 15, 16, 17]. 
The main objective of this study was to create an 
analytical model of gears enabling a more pre-
cise description of rigid shaft motion. This was 
done through an example of single stage spur 
gears. Each shaft has 5 DOF. Revolution about 
the shaft axis is modelled by 1 DOF and there are 
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2 translation (or one rotation and one translation) 
DOF in two perpendicular planes parallel to the 
LOA (line of action) and the OLOA (off-line of 
action) axis. The final and non-modelled DOF is 
the translation along the shaft axis. This motion is 
important in the case of helical gears, and, if nec-
essary, it can be added relatively easily using the 
presented method. The derived equations do not 
contain small-angle approximations in the case of 
planar motion. Additionally, there is no assump-
tion that gears must be located in the centre of 
bearings, and the centre of mass (CoM) can be lo-
cated in a different position than the gears. In pre-
vious studies, e.g. [18, 11, 12, 14], in which the 
shaft was supported between two bearings, the 
description of shaft motion is more simplified and 
does not cover the above-mentioned assumptions. 

Although multi DOF models can simulate gear 
operation more accurately, recent studies still use 
analytical models of gears that have at least 2 DOF. 
Neubauer et al. [19] analysed noise reduction 
based on dynamic force by using a 2 DOF model. 
Dynamic meshing force was modelled in a 6 DOF 
face-gear drive by Zhu et al. [20]. The effect of sig-
nal modulation was investigated with the use of a 
2 DOF model [21]. Another study was carried out 
to model the gears with shafts supported by journal 
bearings based on a 5 DOF analytical model [22]. It 
should be noted that researchers have been testing 
new ideas in models that have different numbers of 
DOF, which – undoubtedly – affects the results. In 
most cases, the dynamic meshing force is a source 
of vibration, noise and degradation of gears and 
other components. In this study, the influence of 
the number of DOF on the dynamic meshing force 

was investigated. The proposed new model with 
12 DOF was compared with other popular models 
that have 2, 4, 6 and 8 DOF. When the meshing 
friction force is not considered, the number of DOF 
in the models with 6, 8 and 12 DOF is reduced to 4, 
6 and 8 DOF. The number of DOF in the proposed 
model could be increased, e.g. to 20 DOF by add-
ing stiffness between gears and shafts and torsional 
stiffness of shafts. This, however, would result in a 
greater difference between the compared models, 
thus making it more difficult to evaluate the effect 
of additional DOF of shafts.

Dynamic analytical model of 
spur gear with 5 DOF shafts

The proposed model consists of a motor, motor 
coupling, spur gear, device coupling and output de-
vice (Fig. 1). The spur gear is comprised of a pinion, 
shaft and half of motor coupling treated as one rigid 
body (pinion subassembly), gear, shaft and half 
of device coupling treated as one rigid body (gear 
subassembly) and four bearings. The motor gener-
ates a constant input torque that is transmitted to 
the pinion by the motor coupling. The pinion drives 
the gear and output device by device coupling. The 
shafts and rotors make torsional vibration due to fi-
nite stiffness and damping of the coupling and gear 
teeth, according to the following equations:

Equations of torsional vibration

𝐼𝐼𝑚𝑚�̈�𝜑𝑚𝑚 +𝑀𝑀𝑐𝑐𝑚𝑚 +𝑀𝑀𝑘𝑘𝑚𝑚 = 𝑇𝑇𝑚𝑚 (1)

𝐼𝐼𝑝𝑝�̈�𝜑𝑝𝑝 + 𝑀𝑀𝑐𝑐𝑝𝑝 +𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑝𝑝 (2)

Fig. 1. Analytical 12 DOF model of single spur gear with motor and output device (break) 
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𝐼𝐼𝑔𝑔�̈�𝜑𝑔𝑔 + 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑔𝑔 = 𝑀𝑀𝑐𝑐𝑔𝑔 +𝑀𝑀𝑘𝑘𝑔𝑔 (3)

𝐼𝐼𝑑𝑑�̈�𝜑𝑑𝑑 + 𝑇𝑇𝑑𝑑 = 𝑀𝑀𝑐𝑐𝑑𝑑 +𝑀𝑀𝑘𝑘𝑑𝑑 (4)

The bearings enable the shafts to vibrate 
in planes parallel to the LOA (x) axis and pass 
through the axis of shaft rotation (Figures 2 and 
3). The normal meshing force is a source of this 
excitation. Free body diagrams used to create 
equations from (5) through (8) are given in Figs. 2 
and 3. The equations describing the shaft and gear 
motion in the planes parallel to the LOA (x) axis 
are as follows:

The equations of vibration in plane parallel 
to LOA (x)

𝐹𝐹𝑘𝑘𝑘𝑘1𝑥𝑥𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘1𝑥𝑥𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) − 𝐼𝐼𝑝𝑝𝑥𝑥�̈�𝜃𝑝𝑝𝑥𝑥 = 𝐹𝐹𝑛𝑛(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) 
𝐹𝐹𝑘𝑘𝑘𝑘1𝑥𝑥𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘1𝑥𝑥𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) − 𝐼𝐼𝑝𝑝𝑥𝑥�̈�𝜃𝑝𝑝𝑥𝑥 = 𝐹𝐹𝑛𝑛(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) 

(5)

𝐹𝐹𝑘𝑘𝑘𝑘2𝑥𝑥𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘2𝑥𝑥𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝2 + 𝐼𝐼𝑝𝑝𝑥𝑥�̈�𝜃𝑝𝑝𝑥𝑥 = 𝐹𝐹𝑛𝑛𝑙𝑙𝑝𝑝1 
𝐹𝐹𝑘𝑘𝑘𝑘2𝑥𝑥𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘2𝑥𝑥𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝2 + 𝐼𝐼𝑝𝑝𝑥𝑥�̈�𝜃𝑝𝑝𝑥𝑥 = 𝐹𝐹𝑛𝑛𝑙𝑙𝑝𝑝1 

(6)

𝐹𝐹𝑘𝑘𝑘𝑘3𝑥𝑥𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘3𝑥𝑥𝑙𝑙𝑔𝑔 +𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝐼𝐼𝑔𝑔𝑥𝑥�̈�𝜃𝑔𝑔𝑥𝑥 = 𝐹𝐹𝑛𝑛(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) 
𝐹𝐹𝑘𝑘𝑘𝑘3𝑥𝑥𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘3𝑥𝑥𝑙𝑙𝑔𝑔 +𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝐼𝐼𝑔𝑔𝑥𝑥�̈�𝜃𝑔𝑔𝑥𝑥 = 𝐹𝐹𝑛𝑛(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) 

(7)

𝐹𝐹𝑘𝑘𝑘𝑘4𝑥𝑥𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘4𝑥𝑥𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑔𝑔2 − 𝐼𝐼𝑔𝑔𝑥𝑥�̈�𝜃𝑔𝑔𝑥𝑥 = 𝐹𝐹𝑛𝑛𝑙𝑙𝑔𝑔1 
𝐹𝐹𝑘𝑘𝑘𝑘4𝑥𝑥𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘4𝑥𝑥𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑔𝑔2 − 𝐼𝐼𝑔𝑔𝑥𝑥�̈�𝜃𝑔𝑔𝑥𝑥 = 𝐹𝐹𝑛𝑛𝑙𝑙𝑔𝑔1 

(8)

Moreover, the bearings enable the shafts to 
vibrate in the planes parallel to the OLOA (y) axis 
and pass through the axis of shaft rotation. The 
variable tooth friction force is a source of this 

excitation. The equations describing the shaft and 
gear motion in the planes parallel to the OLOA 
(y) axis are as follows:

The equations of vibration in plane parallel to 
OLOA (y)
𝐹𝐹𝑘𝑘𝑘𝑘1𝑦𝑦𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘1𝑦𝑦𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) − 𝐼𝐼𝑝𝑝𝑦𝑦�̈�𝜃𝑝𝑝𝑦𝑦 = 𝐹𝐹𝑓𝑓(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) 

𝐹𝐹𝑘𝑘𝑘𝑘1𝑦𝑦𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘1𝑦𝑦𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) − 𝐼𝐼𝑝𝑝𝑦𝑦�̈�𝜃𝑝𝑝𝑦𝑦 = 𝐹𝐹𝑓𝑓(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) (9)

𝐹𝐹𝑘𝑘𝑘𝑘2𝑦𝑦𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘2𝑦𝑦𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝2 + 𝐼𝐼𝑝𝑝𝑦𝑦�̈�𝜃𝑝𝑝𝑦𝑦 = 𝐹𝐹𝑓𝑓𝑙𝑙𝑝𝑝1 
𝐹𝐹𝑘𝑘𝑘𝑘2𝑦𝑦𝑙𝑙𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑘𝑘2𝑦𝑦𝑙𝑙𝑝𝑝 + 𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝2 + 𝐼𝐼𝑝𝑝𝑦𝑦�̈�𝜃𝑝𝑝𝑦𝑦 = 𝐹𝐹𝑓𝑓𝑙𝑙𝑝𝑝1 

(10)

𝐹𝐹𝑘𝑘𝑘𝑘3𝑦𝑦𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘3𝑦𝑦𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝐼𝐼𝑔𝑔𝑦𝑦�̈�𝜃𝑔𝑔𝑦𝑦 = 𝐹𝐹𝑓𝑓(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) 

𝐹𝐹𝑘𝑘𝑘𝑘3𝑦𝑦𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘3𝑦𝑦𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝐼𝐼𝑔𝑔𝑦𝑦�̈�𝜃𝑔𝑔𝑦𝑦 = 𝐹𝐹𝑓𝑓(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) 
(11)

𝐹𝐹𝑘𝑘𝑘𝑘4𝑦𝑦𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘4𝑦𝑦𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑔𝑔2 − 𝐼𝐼𝑔𝑔𝑦𝑦�̈�𝜃𝑔𝑔𝑦𝑦 = 𝐹𝐹𝑓𝑓𝑙𝑙𝑔𝑔1 

𝐹𝐹𝑘𝑘𝑘𝑘4𝑦𝑦𝑙𝑙𝑔𝑔 + 𝐹𝐹𝑐𝑐𝑘𝑘4𝑦𝑦𝑙𝑙𝑔𝑔 + 𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑔𝑔2 − 𝐼𝐼𝑔𝑔𝑦𝑦�̈�𝜃𝑔𝑔𝑦𝑦 = 𝐹𝐹𝑓𝑓𝑙𝑙𝑔𝑔1 (12)

In order to solve the above equations, it is nec-
essary to determine the relationship between the 
motion of characteristic points on the shafts (bot-
tom parts of drawings in Figures 2 and 3). The dis-
placement of pinion χp and gear χg  calculated based 
on the displacement of the bearings is equal to: 

𝑥𝑥𝑝𝑝 = 𝑥𝑥𝑏𝑏1 + 𝑙𝑙𝑝𝑝1
𝑥𝑥𝑏𝑏2 − 𝑥𝑥𝑏𝑏1

𝑙𝑙𝑝𝑝
 (13)

𝑥𝑥𝑔𝑔 = 𝑥𝑥𝑏𝑏4 + (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)
𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔
 (14)

Differential expressions (13) and (14) are ob-
tained to describe the linear velocity of pinion �̇�𝑥𝑝𝑝   
and gear �̇�𝑥𝑔𝑔  :

Fig. 2. Free body diagram on plane defined by the 
𝑥𝑥𝑜𝑜𝑜𝑜(∥ 𝐿𝐿𝐿𝐿𝐿𝐿)  axis and pinion axis of rotation

Fig. 3. Free body diagram on plane defined by the 
𝑥𝑥𝑜𝑜𝑜𝑜(∥ 𝐿𝐿𝐿𝐿𝐿𝐿)  axis and gear axis of rotation
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�̇�𝑥𝑝𝑝 = �̇�𝑥𝑏𝑏1 + 𝑙𝑙𝑝𝑝1
�̇�𝑥𝑏𝑏2 − �̇�𝑥𝑏𝑏1

𝑙𝑙𝑝𝑝
 (15)

�̇�𝑥𝑔𝑔 = �̇�𝑥𝑏𝑏4 + (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)
�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔
 (16)

In a similar way, the linear acceleration of the 
CoM for both a rigid body consisting of a pin-
ion, shaft and half of motor coupling �̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 
�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and for a rigid body composed of a gear, 

shaft and half of device coupling �̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  and 
�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is expressed as: 

�̈�𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �̈�𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝2(�̈�𝑥𝑏𝑏2−�̈�𝑥𝑏𝑏1)

𝑙𝑙𝑝𝑝
 (17)

�̈�𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �̈�𝑦𝑏𝑏1 +
𝑙𝑙𝑝𝑝2(�̈�𝑦𝑏𝑏2−�̈�𝑦𝑏𝑏1)

𝑙𝑙𝑝𝑝
 (18)

�̈�𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �̈�𝑥𝑏𝑏4 +
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)(�̈�𝑥𝑏𝑏3−�̈�𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
 (19)

�̈�𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �̈�𝑦𝑏𝑏4 +
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)(�̈�𝑦𝑏𝑏3−�̈�𝑦𝑏𝑏4)

𝑙𝑙𝑔𝑔
 (20)

Since the shafts with gears and couplings per-
form a planar motion, the relationship between 
angular acceleration and motion of the bearings 
must be established. First, the equations describ-
ing angular displacement are defined:

𝜃𝜃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑥𝑥𝑏𝑏2 − 𝑥𝑥𝑏𝑏1
𝑙𝑙𝑝𝑝

 (21)

𝜃𝜃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑦𝑦𝑏𝑏2 − 𝑦𝑦𝑏𝑏1
𝑙𝑙𝑝𝑝

 (22)

𝜃𝜃𝑔𝑔𝑔𝑔 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4
𝑙𝑙𝑔𝑔

 (23)

𝜃𝜃𝑔𝑔𝑔𝑔 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4
𝑙𝑙𝑔𝑔

 (24)

By differentiating Equations (21–24) twice, 
the following accelerations are obtained: 

�̈�𝜃𝑝𝑝𝑝𝑝 = − �̈�𝑥𝑏𝑏1 − �̈�𝑥𝑏𝑏2

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

−
(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)2(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2
)
3
2

 
(25)

�̈�𝜃𝑝𝑝𝑝𝑝 = − �̈�𝑦𝑏𝑏1 − �̈�𝑦𝑏𝑏2

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

−
(�̇�𝑦𝑏𝑏1 − �̇�𝑦𝑏𝑏2)2(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2
)
3
2

 
(26)

�̈�𝜃𝑔𝑔𝑔𝑔 =
�̈�𝑥𝑏𝑏3 − �̈�𝑥𝑏𝑏4

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

+
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)2(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2
)
3
2

 
(27)

�̈�𝜃𝑔𝑔𝑔𝑔 =
�̈�𝑦𝑏𝑏3 − �̈�𝑦𝑏𝑏4

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

+
(�̇�𝑦𝑏𝑏3 − �̇�𝑦𝑏𝑏4)2(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2
)
3
2

 
(28)

Equations (13–28) were derived without 
small-angle approximations. The parameters of 
the analysed model are given in Tables 1 and 2. 

Stiffness of teeth (Fig. 4) is obtained by 
the analytical model proposed by Cai [23]. In 
this model, the stiffness of one pair of teeth, 
𝑘𝑘𝑠𝑠1𝑚𝑚𝑚𝑚𝑚𝑚 = 418.72 ∙ 106 N/m,  is determined in ac-
cordance with ISO 6336–1. 

Friction of the gear teeth was also considered 
using the Coulomb (sliding) friction model. The 
force of friction 𝐹𝐹𝑓𝑓  is calculated according to 
Equation (29). This force vector changes its sense 
in the pitch point (Fig. 5). 

𝐹𝐹𝑓𝑓 = 𝜇𝜇𝐹𝐹𝑛𝑛 (29)
where: μ = 0.015 is the coefficient of sliding fric-

tion used in the simulations.

The friction force acts at a distance from the 
centre of rotation of the gears, which produces 
frictional motion. A general formula is as follows:

𝑀𝑀𝑓𝑓 = 𝐹𝐹𝑓𝑓𝑟𝑟𝑓𝑓 (30)
where: 𝑟𝑟𝑓𝑓 is the arm of the frictional moment 

simulated as variable in time [m]

For the purpose of clarity, the normal mesh-
ing force used for calculating the tooth friction 
force shown in Figure 5 has a constant value of 
Fn = 2 000 N. The main parameters of other com-
ponents are given in Table 2.

Analytical models of gears used 
for comparison purposes

The models used for comparison purposes 
were described in this section. These models 
are very popular in the literature of the subject 
and have 2, 4, 6 and 8 DOF. Their parameters 
are the same as those used in the new model 
that were presented in Section 2. The equations 
and graphical representations of the employed 
models are given below. All models are based 
on a 2 DOF model.
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Table 1. Properties of gears

Parameter Pinion Gear
Number of teeth zp = 23 zg = 48
Module [mm] m = 4
Pressure angle [°] α0 = 20
Working 
(operating) 
pressure angle [°]

αw  = 17.61399

Face width [mm] b = 40
Modifi cation 
coeffi  cient xp = -0.1 xg = -0.372

Contact ratio ɛ = 1,78
Moment of inertia 
(pinion/gear, shaft 
and half of motor/
device coupling) 
[kgm2]

Ip = 0.0033315;
Ipx = Ipy = 

0.0117285

Ig = 0.036831;
Igx = Igy = 

0.0295635

Mesh damping 
[Ns/m] c = 40

Initial angular 
speed [rad/s]

wp = 157,0796 
(np = 1500 rpm)

wg = 157.0796/
(48/23)

Table 2. Properties of other components

Parameter Motor rotor Device rotor

Moment of 
inertia [kgm2] Im = 0.075 Id = 0.12

Torque [Nm] Tm = 63.66 Td = 132.85

Initial angular 
speed [rad/s]

m = 157.0796 (nm
= 1500 rpm)

d = 
157.0796/(48/23)

Motor coupling Device coupling

Stiffness [N/m]

Damping [Ns/m]

Bearings

Stiffness [N/m]

Damping [Ns/m]

Fig. 4. Stiff ness of teeth used in the simulations

Fig. 5. Examples of diagrams showing friction force and frictional mo-
ment versus time (for a constant value of normal meshing force)
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2 DOF model

In this model, gears can rotate and vibrate in-
dependently about the axis of shaft rotation. The 
moments of inertia for the pinion Ip and the gear Ig 
are the same as those listed in Table 1. 

Equations of torsional vibration
𝐼𝐼𝑝𝑝�̈�𝜑𝑝𝑝 +𝑀𝑀𝑐𝑐𝑝𝑝 +𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑇𝑇𝑚𝑚 +𝑀𝑀𝑓𝑓𝑝𝑝 (31)

𝐼𝐼𝑔𝑔�̈�𝜑𝑔𝑔 + 𝑇𝑇𝑑𝑑 +𝑀𝑀𝑓𝑓𝑔𝑔 = 𝑀𝑀𝑐𝑐𝑔𝑔 +𝑀𝑀𝑘𝑘𝑔𝑔 (32)

4 DOF model

Compared to the previous model, the addi-
tional DOF are obtained by taking into account 
the couplers, motor and device rotor. All DOF 
describe rotation motion and torsional vibration. 

Equations of torsional vibration
𝐼𝐼𝑚𝑚�̈�𝜑𝑚𝑚 +𝑀𝑀𝑐𝑐𝑚𝑚 +𝑀𝑀𝑘𝑘𝑚𝑚 = 𝑇𝑇𝑚𝑚 (33)

𝐼𝐼𝑝𝑝�̈�𝜑𝑝𝑝 + 𝑀𝑀𝑐𝑐𝑝𝑝 +𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑝𝑝 (34)

𝐼𝐼𝑔𝑔�̈�𝜑𝑔𝑔 + 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑔𝑔 = 𝑀𝑀𝑐𝑐𝑔𝑔 +𝑀𝑀𝑘𝑘𝑔𝑔 (35)

𝐼𝐼𝑑𝑑�̈�𝜑𝑑𝑑 + 𝑇𝑇𝑑𝑑 = 𝑀𝑀𝑐𝑐𝑑𝑑 +𝑀𝑀𝑘𝑘𝑑𝑑 (36)

6 DOF model

In order to obtain this model from the 2 DOF 
model, gear translations were added. Each gear 
has 3 DOF and can perform lateral and torsional 
vibration. The bearing stiffness is twice higher 
than that of the bearings in the proposed mod-
el. In this way, the total stiffness is the same. If 
friction is not considered, the motion along the 
OLOA (y) axis does not occur, and thus the mod-
el is reduced to 4 DOF.

Fig. 6. 2 DOF model

Equations of torsional vibration

𝐼𝐼𝑝𝑝�̈�𝜑𝑝𝑝 +𝑀𝑀𝑐𝑐𝑝𝑝 +𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑇𝑇𝑚𝑚 +𝑀𝑀𝑓𝑓𝑝𝑝 (37)

𝐼𝐼𝑔𝑔�̈�𝜑𝑔𝑔 + 𝑇𝑇𝑑𝑑 +𝑀𝑀𝑓𝑓𝑔𝑔 = 𝑀𝑀𝑐𝑐𝑔𝑔 +𝑀𝑀𝑘𝑘𝑔𝑔 (38)

Equations of vibration in the plane parallel to 
LOA (x)

𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝 + 𝑐𝑐𝑏𝑏𝑝𝑝𝑏𝑏�̇�𝑥𝑝𝑝 + 𝑘𝑘𝑏𝑏𝑝𝑝𝑏𝑏𝑥𝑥𝑝𝑝 = 𝐹𝐹𝑛𝑛 (39)

𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔 + 𝑐𝑐𝑏𝑏𝑔𝑔𝑏𝑏�̇�𝑥𝑔𝑔 + 𝑘𝑘𝑏𝑏𝑔𝑔𝑏𝑏𝑥𝑥𝑔𝑔 = 𝐹𝐹𝑛𝑛 (40)

Equations of vibration in the plane parallel to 
OLOA (y)

𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝 + 𝑐𝑐𝑏𝑏𝑝𝑝𝑏𝑏�̇�𝑦𝑝𝑝 + 𝑘𝑘𝑏𝑏𝑝𝑝𝑏𝑏𝑦𝑦𝑝𝑝 = 𝐹𝐹𝑓𝑓 (41)

𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔 + 𝑐𝑐𝑏𝑏𝑔𝑔𝑏𝑏�̇�𝑦𝑔𝑔 + 𝑘𝑘𝑏𝑏𝑔𝑔𝑏𝑏𝑦𝑦𝑔𝑔 = 𝐹𝐹𝑓𝑓 (42)

8 DOF model

Compared to the previous model, torsional vi-
brations of the motor and device rotor were added 
through couplings. If friction is not considered, 
the motion along the OLOA (y) axis does not oc-
cur, and thus the model is reduced to 6 DOF.
Equations of torsional vibration

𝐼𝐼𝑚𝑚�̈�𝜑𝑚𝑚 +𝑀𝑀𝑐𝑐𝑚𝑚 +𝑀𝑀𝑘𝑘𝑚𝑚 = 𝑇𝑇𝑚𝑚 (43)

𝐼𝐼𝑝𝑝�̈�𝜑𝑝𝑝 + 𝑀𝑀𝑐𝑐𝑝𝑝 +𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑝𝑝 (44)

𝐼𝐼𝑔𝑔�̈�𝜑𝑔𝑔 + 𝑀𝑀𝑐𝑐𝑐𝑐 +𝑀𝑀𝑘𝑘𝑐𝑐 +𝑀𝑀𝑓𝑓𝑔𝑔 = 𝑀𝑀𝑐𝑐𝑔𝑔 +𝑀𝑀𝑘𝑘𝑔𝑔 (45)

𝐼𝐼𝑑𝑑�̈�𝜑𝑑𝑑 + 𝑇𝑇𝑑𝑑 = 𝑀𝑀𝑐𝑐𝑑𝑑 +𝑀𝑀𝑘𝑘𝑑𝑑 (46)

Equations of vibration in the plane parallel to 
LOA (x)

𝑚𝑚𝑝𝑝�̈�𝑥𝑝𝑝 + 𝑐𝑐𝑏𝑏𝑝𝑝𝑏𝑏�̇�𝑥𝑝𝑝 + 𝑘𝑘𝑏𝑏𝑝𝑝𝑏𝑏𝑥𝑥𝑝𝑝 = 𝐹𝐹𝑛𝑛 (47)
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𝑚𝑚𝑔𝑔�̈�𝑥𝑔𝑔 + 𝑐𝑐𝑏𝑏𝑔𝑔𝑏𝑏�̇�𝑥𝑔𝑔 + 𝑘𝑘𝑏𝑏𝑔𝑔𝑏𝑏𝑥𝑥𝑔𝑔 = 𝐹𝐹𝑛𝑛 (48)

Equations of vibration in the plane parallel to 
OLOA (y)

𝑚𝑚𝑝𝑝�̈�𝑦𝑝𝑝 + 𝑐𝑐𝑏𝑏𝑝𝑝𝑏𝑏�̇�𝑦𝑝𝑝 + 𝑘𝑘𝑏𝑏𝑝𝑝𝑏𝑏𝑦𝑦𝑝𝑝 = 𝐹𝐹𝑓𝑓 (49)

𝑚𝑚𝑔𝑔�̈�𝑦𝑔𝑔 + 𝑐𝑐𝑏𝑏𝑔𝑔𝑏𝑏�̇�𝑦𝑔𝑔 + 𝑘𝑘𝑏𝑏𝑔𝑔𝑏𝑏𝑦𝑦𝑔𝑔 = 𝐹𝐹𝑓𝑓 (50)

Numerical calculations of dynamic meshing 
force

All models were used to find the value of the 
dynamic meshing force Fd for stable vibration. The 

Fig. 7. 4 DOF model

Fig. 8. 6 DOF model

Fig. 9. 8 DOF model

Simulink and Matlab environments, in combination 
with the Runge-Kutta method (4,5) were employed 
to solve the equations. The solver’s absolute toler-
ance was set to 1e-8 and the maximum step was 1e-5. 

Figure 10 shows the results of five models 
for two considered variants: with and without 
tooth friction. The coefficient of sliding friction 
is equal to μ=0.015, which results in a low value 
of the friction force. In effect, the dynamic mesh-
ing force value does not differ to a significant ex-
tent. Similar results were obtained for the mod-
els with 4 and 8 DOF, and the same situation can 
be observed for the three remaining models. In 
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this simulation, the gears and CoM are located in 
the centre of the bearings in the 12 DOF model 
(𝑙𝑙𝑝𝑝 = 𝑙𝑙𝑔𝑔 = 2𝑙𝑙𝑝𝑝1 = 2𝑙𝑙𝑝𝑝2 = 2𝑙𝑙𝑔𝑔1 = 2𝑙𝑙𝑔𝑔2 ). 

The assumption that gears are located in the 
centre of bearings in a real structure is usually 
valid. The same is, however, rarely true with re-
spect to the CoM of shafts or – like in the case in 
question – the CoM of shaft, pinion/gear and half 
of coupling treated as one body. This is because 
one end of the shaft extends outside the bearing to 
enable the connection with other members of the 
drive system. This particular case of an asymmet-
ric position of the CoM was also analysed in this 
study (Figs. 11 and 12). Gears are always located 
in the centre of bearings ( 𝑙𝑙𝑝𝑝 = 𝑙𝑙𝑔𝑔 = 2𝑙𝑙𝑝𝑝1 = 2𝑙𝑙𝑔𝑔1 ). 
The CoM of the pinion and gear subassembly is 
displaced about a certain value that is calculated 
as: . In the first analysis, the 
distance was changed every 0.002 m (Fig. 11). 
The dynamic meshing force increases in a similar 
way to the exponential diagram. 

In the second analysis (Fig. 12), the distance was 
changed every 0.01 m. The results are not mono-
tonic. The maximum value of the dynamic meshing 
force was achieved for the 0.01 m distance and it 
decreased with increasing distance. Figure 13 shows 
the spectra of pinion torsional vibration for the same 
models as those shown in Figure 10. The influence 
of friction is not significant because the vibrations 
are stable and the sliding friction coefficient is low. 
For the models having from 2 to 8 DOF, the domi-
nant frequency is 4 025 Hz. For the 12 DOF model, 
this frequency is equal to 5175 Hz.

CONCLUSIONS

This study investigated the influence of the 
number of modelled DOF on the dynamic mesh-
ing force (Fig. 10), demonstrating that the addi-
tion of rotational DOF and the consideration of 
couplings and rotors in outside machines are of 

Fig. 11. Dynamic meshing force calculated for the 12 DOF model with the dis-
tance between the centre of gears and the CoM ranging from 0 to 0.01 m

Fig. 10. Dynamic meshing force calculated with and without friction
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significant importance for the models. This con-
cerns the models with 4 DOF and 8 DOF, as they 
have considerably lower values of the dynamic 
meshing force than the models with 2 DOF and 6 
DOF. The moments of inertia of rotors in outside 
machines are usually higher than those of shafts 
and gears, which accounts for the differences. The 
12 DOF model also contains the rotational DOF, 
but the dynamic meshing force is higher, which is 
caused by the additional DOF of the shafts. Each 
shaft has 5 DOF. The spatial motion is modelled 
more accurately, which has a significant impact 
on the gear dynamics. The proposed model also 
makes it possible to describe the spatial position 
of forces and moments in a more precise manner. 
The influence of the distance between the centre 

of gears and the CoM was analysed (Figs. 11 
and 12). It was found that the relationship is not 
monotonic and is of significant importance.

Interesting results were also obtained when 
4 DOF connected with shaft motion were added 
to the models with 2 DOF (Fig. 6) and 4 DOF 
(Fig. 7), thus yielding the models with 6 DOF 
(Fig. 8) and 8 DOF (Fig. 9). The difference in the 
dynamic meshing force between the 2 DOF and 6 
DOF models and between the 4 DOF and 8 DOF 
models is not that significant (Fig. 10).

In this study, the influence of different numbers 
of DOF in gear models on the dynamic meshing 
force was investigated. The proposed new model al-
lows for a more precise description of shaft motion, 
which distinguishes it from the previous models. 

Fig. 12. Dynamic meshing force calculated for the 12 DOF model with the dis-
tance between the centre of gears and the CoM ranging from 0 to 0.03 m

Fig. 13. Spectrum of torsional vibration in models with different numbers of DOF
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Appendix A. Dynamic equations of the proposed 12 DOF model converted to the form that could be implemented 
in Simulink

�̈�𝜑𝑚𝑚 = [𝑇𝑇𝑚𝑚 − 𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚(�̇�𝜑𝑚𝑚 − �̇�𝜑𝑝𝑝) − 𝑘𝑘𝑚𝑚𝑟𝑟𝑚𝑚(𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑝𝑝)]
1
𝐼𝐼𝑚𝑚

 (A.1) 

�̈�𝜑𝑝𝑝 = [𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚(�̇�𝜑𝑚𝑚 − �̇�𝜑𝑝𝑝) + 𝑘𝑘𝑚𝑚𝑟𝑟𝑚𝑚(𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑝𝑝) + 𝑀𝑀𝑓𝑓𝑝𝑝

+ 𝑘𝑘𝑟𝑟𝑏𝑏1 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1−𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐𝑟𝑟𝑏𝑏1 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏4 − �̇�𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)] 1𝐼𝐼𝑝𝑝

 
 

(A.2) 

�̈�𝜑𝑔𝑔 = [𝑐𝑐𝑑𝑑𝑟𝑟𝑑𝑑(�̇�𝜑𝑑𝑑 − �̇�𝜑𝑔𝑔) + 𝑘𝑘𝑑𝑑𝑟𝑟𝑑𝑑(𝜑𝜑𝑑𝑑 − 𝜑𝜑𝑔𝑔) − 𝑀𝑀𝑓𝑓𝑔𝑔

− 𝑘𝑘𝑟𝑟𝑏𝑏2 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − 𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

− 𝑐𝑐𝑟𝑟𝑏𝑏2 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏4 − �̇�𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)] 1𝐼𝐼𝑔𝑔

 
 

(A.3) 

�̈�𝜑𝑑𝑑 = [𝑐𝑐𝑑𝑑𝑟𝑟𝑑𝑑(�̇�𝜑𝑔𝑔 − �̇�𝜑𝑑𝑑) + 𝑘𝑘𝑑𝑑𝑟𝑟𝑑𝑑(𝜑𝜑𝑔𝑔 − 𝜑𝜑𝑑𝑑) − 𝑇𝑇𝑑𝑑]
1
𝐼𝐼𝑑𝑑

 
 

(A.4) 

�̈�𝑥𝑏𝑏1 =

{
 
 

 
 

[𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1−𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)] (𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1)

− 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑥𝑏𝑏2

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

−
(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)2(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏1𝑥𝑥𝑏𝑏1 + 𝑙𝑙𝑝𝑝𝑐𝑐𝑏𝑏1�̇�𝑥𝑏𝑏1

+
𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2)�̈�𝑥𝑏𝑏2

𝑙𝑙𝑝𝑝

}
 
 

 
 

÷

[
 
 
 
 
 

𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) (
𝑙𝑙𝑝𝑝2
𝑙𝑙𝑝𝑝
− 1) −

𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 ]
 
 
 
 
 

 

 

(A.5) 

�̈�𝑥𝑏𝑏2 =

{
 
 

 
 

𝑙𝑙𝑝𝑝1 [𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1−𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)]

− 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑥𝑏𝑏1

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

+
(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)2(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏2𝑥𝑥𝑏𝑏2 + 𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝 (�̈�𝑥𝑏𝑏1 −

𝑙𝑙𝑝𝑝2�̈�𝑥𝑏𝑏1
𝑙𝑙𝑝𝑝

)

+ 𝑙𝑙𝑝𝑝𝑐𝑐𝑏𝑏2�̇�𝑥𝑏𝑏2

}
 
 

 
 

÷

(

 
 
 
−

𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

−
𝑙𝑙𝑝𝑝22 𝑚𝑚𝑝𝑝
𝑙𝑙𝑝𝑝

)

 
 
 

 

 

(A.6) 

�̈�𝑥𝑏𝑏3 =

{
 
 

 
 

[𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − 𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)] (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

− 𝐼𝐼𝑔𝑔𝑔𝑔

(

 
 
 �̈�𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)2(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏3𝑥𝑥𝑏𝑏3

+ 𝑚𝑚𝑔𝑔 (�̈�𝑥𝑏𝑏4 −
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔
) (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏3�̇�𝑥𝑏𝑏3

}
 
 

 
 

÷

(

 
 
 
−

𝐼𝐼𝑔𝑔𝑔𝑔

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

−
𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)

2

𝑙𝑙𝑔𝑔

)

 
 
 

 

 

(A.7) 

�̈�𝑥𝑏𝑏4 =

{
 
 

 
 

𝑙𝑙𝑔𝑔1 [𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1−𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)]

− 𝐼𝐼𝑔𝑔𝑔𝑔

(

 
 
 �̈�𝑥𝑏𝑏3

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

+
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)2(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏4𝑥𝑥𝑏𝑏4 + 𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏4�̇�𝑥𝑏𝑏4

+
𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑥𝑏𝑏3

𝑙𝑙𝑔𝑔

}
 
 

 
 

÷

(

 
 
 
𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔 (

𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2
𝑙𝑙𝑔𝑔

− 1) −
𝐼𝐼𝑔𝑔𝑔𝑔

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )

 
 
 

 

 

(A.8) 

�̈�𝑦𝑏𝑏1 =

𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏1𝑦𝑦𝑏𝑏1 − 𝐹𝐹𝑓𝑓(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) − 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏2

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

− (�̇�𝑦𝑏𝑏1 − �̇�𝑦𝑏𝑏2)
2(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝𝑐𝑐𝑏𝑏1�̇�𝑦𝑏𝑏1 +

𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2)�̈�𝑦𝑏𝑏2
𝑙𝑙𝑝𝑝

𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) (
𝑙𝑙𝑝𝑝2
𝑙𝑙𝑝𝑝 − 1) −

𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

 

 

(A.9) 

�̈�𝑦𝑏𝑏2 =

𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏2𝑦𝑦𝑏𝑏2 − 𝐹𝐹𝑓𝑓𝑙𝑙𝑝𝑝1 − 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏1

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

+ (�̇�𝑦𝑏𝑏1 − �̇�𝑦𝑏𝑏2)
2(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝 (�̈�𝑦𝑏𝑏1 −

𝑙𝑙𝑝𝑝2�̈�𝑦𝑏𝑏1
𝑙𝑙𝑝𝑝 )+𝑙𝑙𝑝𝑝2𝑐𝑐𝑏𝑏2�̇�𝑦𝑏𝑏2

− 𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

− 𝑙𝑙𝑝𝑝2
2 𝑚𝑚𝑝𝑝
𝑙𝑙𝑝𝑝

 

 

(A.10) 

�̈�𝑦𝑏𝑏3 =

𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏3𝑦𝑦𝑏𝑏3 − 𝐹𝐹𝑓𝑓(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) − 𝐼𝐼𝑔𝑔𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏4

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

− (�̇�𝑦𝑏𝑏3 − �̇�𝑦𝑏𝑏4)
2(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+𝑚𝑚𝑔𝑔 (�̈�𝑦𝑏𝑏4 −

(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑦𝑏𝑏4
𝑙𝑙𝑔𝑔 ) (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)+𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏3�̇�𝑦𝑏𝑏3

−𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)
2

𝑙𝑙𝑔𝑔 − 𝐼𝐼𝑔𝑔𝑝𝑝

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

 

 

(A.11) 
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�̈�𝑥𝑏𝑏3 =

{
 
 

 
 

[𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − 𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)] (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

− 𝐼𝐼𝑔𝑔𝑔𝑔

(

 
 
 �̈�𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)2(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏3𝑥𝑥𝑏𝑏3

+ 𝑚𝑚𝑔𝑔 (�̈�𝑥𝑏𝑏4 −
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑥𝑏𝑏4

𝑙𝑙𝑔𝑔
) (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2) + 𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏3�̇�𝑥𝑏𝑏3

}
 
 

 
 

÷

(

 
 
 
−

𝐼𝐼𝑔𝑔𝑔𝑔

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

−
𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)

2

𝑙𝑙𝑔𝑔

)

 
 
 

 

 

(A.7) 

�̈�𝑥𝑏𝑏4 =

{
 
 

 
 

𝑙𝑙𝑔𝑔1 [𝑘𝑘 (𝜑𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − 𝜑𝜑𝑝𝑝𝑟𝑟𝑏𝑏1−𝑥𝑥𝑏𝑏4 − 𝑥𝑥𝑏𝑏1 +
𝑙𝑙𝑝𝑝1(𝑥𝑥𝑏𝑏1 − 𝑥𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔
)

+ 𝑐𝑐 (�̇�𝜑𝑔𝑔𝑟𝑟𝑏𝑏2 − �̇�𝜑𝑝𝑝𝑟𝑟𝑏𝑏1 − �̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏4 +
𝑙𝑙𝑝𝑝1(�̇�𝑥𝑏𝑏1 − �̇�𝑥𝑏𝑏2)

𝑙𝑙𝑝𝑝
−
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1)

𝑙𝑙𝑔𝑔
)]

− 𝐼𝐼𝑔𝑔𝑔𝑔

(

 
 
 �̈�𝑥𝑏𝑏3

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

+
(�̇�𝑥𝑏𝑏3 − �̇�𝑥𝑏𝑏4)2(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏4𝑥𝑥𝑏𝑏4 + 𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏4�̇�𝑥𝑏𝑏4

+
𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑥𝑏𝑏3

𝑙𝑙𝑔𝑔

}
 
 

 
 

÷

(

 
 
 
𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔 (

𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2
𝑙𝑙𝑔𝑔

− 1) −
𝐼𝐼𝑔𝑔𝑔𝑔

𝑙𝑙𝑔𝑔√1 −
(𝑥𝑥𝑏𝑏3 − 𝑥𝑥𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )

 
 
 

 

 

(A.8) 

�̈�𝑦𝑏𝑏1 =

𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏1𝑦𝑦𝑏𝑏1 − 𝐹𝐹𝑓𝑓(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝1) − 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏2

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

− (�̇�𝑦𝑏𝑏1 − �̇�𝑦𝑏𝑏2)
2(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝𝑐𝑐𝑏𝑏1�̇�𝑦𝑏𝑏1 +

𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2)�̈�𝑦𝑏𝑏2
𝑙𝑙𝑝𝑝

𝑚𝑚𝑝𝑝(𝑙𝑙𝑝𝑝 − 𝑙𝑙𝑝𝑝2) (
𝑙𝑙𝑝𝑝2
𝑙𝑙𝑝𝑝 − 1) −

𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

 

 

(A.9) 

�̈�𝑦𝑏𝑏2 =

𝑙𝑙𝑝𝑝𝑘𝑘𝑏𝑏2𝑦𝑦𝑏𝑏2 − 𝐹𝐹𝑓𝑓𝑙𝑙𝑝𝑝1 − 𝐼𝐼𝑝𝑝𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏1

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

+ (�̇�𝑦𝑏𝑏1 − �̇�𝑦𝑏𝑏2)
2(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)

𝑙𝑙𝑝𝑝3 (1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑝𝑝2𝑚𝑚𝑝𝑝 (�̈�𝑦𝑏𝑏1 −

𝑙𝑙𝑝𝑝2�̈�𝑦𝑏𝑏1
𝑙𝑙𝑝𝑝 )+𝑙𝑙𝑝𝑝2𝑐𝑐𝑏𝑏2�̇�𝑦𝑏𝑏2

− 𝐼𝐼𝑝𝑝𝑝𝑝

𝑙𝑙𝑝𝑝√1 −
(𝑦𝑦𝑏𝑏1 − 𝑦𝑦𝑏𝑏2)2

𝑙𝑙𝑝𝑝2

− 𝑙𝑙𝑝𝑝2
2 𝑚𝑚𝑝𝑝
𝑙𝑙𝑝𝑝

 

 

(A.10) 

�̈�𝑦𝑏𝑏3 =

𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏3𝑦𝑦𝑏𝑏3 − 𝐹𝐹𝑓𝑓(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔1) − 𝐼𝐼𝑔𝑔𝑝𝑝

(

 
 
 �̈�𝑦𝑏𝑏4

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

− (�̇�𝑦𝑏𝑏3 − �̇�𝑦𝑏𝑏4)
2(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+𝑚𝑚𝑔𝑔 (�̈�𝑦𝑏𝑏4 −

(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑦𝑏𝑏4
𝑙𝑙𝑔𝑔 ) (𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)+𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏3�̇�𝑦𝑏𝑏3

−𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)
2

𝑙𝑙𝑔𝑔 − 𝐼𝐼𝑔𝑔𝑝𝑝

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

 

 

(A.11) 

�̈�𝑦𝑏𝑏4 =

𝑙𝑙𝑔𝑔𝑘𝑘𝑏𝑏4𝑦𝑦𝑏𝑏4 − 𝐹𝐹𝑓𝑓𝑙𝑙𝑔𝑔1 − 𝐼𝐼𝑔𝑔𝑔𝑔

(

 
 
 �̈�𝑦𝑏𝑏3

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

+ (�̇�𝑦𝑏𝑏3 − �̇�𝑦𝑏𝑏4)
2(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)

𝑙𝑙𝑔𝑔3 (1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2 )
3
2

)

 
 
 
+ 𝑙𝑙𝑔𝑔𝑐𝑐𝑏𝑏4�̇�𝑦𝑏𝑏4 +

𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔(𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2)�̈�𝑦𝑏𝑏3
𝑙𝑙𝑔𝑔

𝑙𝑙𝑔𝑔2𝑚𝑚𝑔𝑔 (
𝑙𝑙𝑔𝑔 − 𝑙𝑙𝑔𝑔2
𝑙𝑙𝑔𝑔 − 1) − 𝐼𝐼𝑔𝑔𝑔𝑔

𝑙𝑙𝑔𝑔√1 −
(𝑦𝑦𝑏𝑏3 − 𝑦𝑦𝑏𝑏4)2

𝑙𝑙𝑔𝑔2

 

 

(A.12) 
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Nomenclature

𝑇𝑇𝑚𝑚 – input motor torque [Nm] 
𝑇𝑇𝑑𝑑 – output device torque [Nm] 
𝐼𝐼𝑚𝑚– mass moment of inertia of motor rotor and half of coupling [kg·m2] 
𝐼𝐼𝑝𝑝 – mass moment of inertia of pinion, shaft and half of coupling (pinion subassembly) [kg·m2] 
𝐼𝐼𝑔𝑔 – mass moment of inertia of gear, shaft and half of coupling (gear subassembly) [kg·m2] 
𝐼𝐼𝑑𝑑 – mass moment of inertia of device rotor and half of coupling [kg·m2] 
𝐼𝐼𝑝𝑝𝑝𝑝 (𝐼𝐼𝑝𝑝𝑝𝑝 = 𝐼𝐼𝑝𝑝𝑝𝑝) – mass moment of inertia of pinion, shaft and half of coupling about 𝑦𝑦𝑜𝑜𝑝𝑝 axis [kg·m2] 
𝐼𝐼𝑔𝑔𝑝𝑝 (𝐼𝐼𝑔𝑔𝑝𝑝 = 𝐼𝐼𝑔𝑔𝑝𝑝 ) – mass moment of inertia of gear, shaft and half of coupling about the 𝑦𝑦𝑜𝑜𝑔𝑔 axis [kg·m2] 
�̈�𝜑 – angular acceleration [rad/ s2]: �̈�𝜑𝑚𝑚 – motor rotor, �̈�𝜑𝑝𝑝 – pinion, �̈�𝜑𝑔𝑔 – gear, �̈�𝜑𝑑𝑑 – device rotor 
�̈�𝜃𝑝𝑝𝑝𝑝 – angular acceleration of pinion about the 𝑦𝑦𝑜𝑜𝑝𝑝 axis [rad/ s2] 
�̈�𝜃𝑔𝑔𝑝𝑝 – angular acceleration of gear about the 𝑦𝑦𝑜𝑜𝑔𝑔 axis [rad/ s2] 
�̈�𝜃𝑝𝑝𝑝𝑝 – angular acceleration of pinion about the 𝑥𝑥𝑜𝑜𝑝𝑝 axis [rad/ s2] 
�̈�𝜃𝑔𝑔𝑝𝑝 – angular acceleration of gear about the 𝑥𝑥𝑜𝑜𝑔𝑔 axis [rad/s2] 
�̈�𝑥𝑝𝑝 – linear acceleration of pinion on plane defined by the 𝑥𝑥𝑜𝑜𝑝𝑝 axis and pinion axis of rotation [m/s2] 
�̈�𝑥𝑔𝑔 – linear acceleration of gear on plane defined by the 𝑥𝑥𝑜𝑜𝑔𝑔 axis and gear axis of rotation [m/s2] 
�̈�𝑦𝑝𝑝 – linear acceleration of pinion on plane defined by the 𝑦𝑦𝑜𝑜𝑝𝑝  axis and pinion axis of rotation [m/s2] 
�̈�𝑦𝑔𝑔 – linear acceleration of gear on plane defined by the 𝑦𝑦𝑜𝑜𝑔𝑔 axis and gear axis of rotation [m/s2] 
𝑀𝑀𝑐𝑐𝑚𝑚 = 𝑐𝑐𝑚𝑚(�̇�𝜑𝑚𝑚 − �̇�𝜑𝑝𝑝)𝑟𝑟𝑚𝑚 – torque applied on motor coupling from damping [Nm] 
𝑀𝑀𝑘𝑘𝑚𝑚 = 𝑘𝑘𝑚𝑚(𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑝𝑝)𝑟𝑟𝑚𝑚 – torque applied on motor coupling from stiffness [Nm] 
𝑀𝑀𝑐𝑐𝑝𝑝 = 𝑐𝑐(𝑟𝑟𝑏𝑏1�̇�𝜑𝑝𝑝 + �̇�𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2�̇�𝜑𝑔𝑔 + �̇�𝑥𝑔𝑔)𝑟𝑟𝑏𝑏1 – torque applied on pinion from damping [Nm] 
𝑀𝑀𝑘𝑘𝑝𝑝 = 𝑘𝑘(𝑟𝑟𝑏𝑏1𝜑𝜑𝑝𝑝 + 𝑥𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2𝜑𝜑𝑔𝑔 + 𝑥𝑥𝑔𝑔)𝑟𝑟𝑏𝑏1– torque applied on pinion from stiffness [Nm] 
𝑀𝑀𝑐𝑐𝑔𝑔 = 𝑐𝑐(𝑟𝑟𝑏𝑏1�̇�𝜑𝑝𝑝 + �̇�𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2�̇�𝜑𝑔𝑔 + �̇�𝑥𝑔𝑔)𝑟𝑟𝑏𝑏2 – torque applied on gear from damping [Nm] 
𝑀𝑀𝑘𝑘𝑔𝑔 = 𝑘𝑘(𝑟𝑟𝑏𝑏1𝜑𝜑𝑝𝑝 + 𝑥𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2𝜑𝜑𝑔𝑔 + 𝑥𝑥𝑔𝑔)𝑟𝑟𝑏𝑏2– torque applied on gear from stiffness [Nm] 
𝑀𝑀𝑐𝑐𝑑𝑑 = 𝑐𝑐𝑑𝑑(�̇�𝜑𝑔𝑔 − �̇�𝜑𝑑𝑑)𝑟𝑟𝑑𝑑 – torque applied on device coupling from damping [Nm] 
𝑀𝑀𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑑𝑑(𝜑𝜑𝑔𝑔 − 𝜑𝜑𝑑𝑑)𝑟𝑟𝑑𝑑 – torque applied on device coupling from stiffness [Nm] 
𝑀𝑀𝑓𝑓𝑝𝑝 = 𝐹𝐹𝑓𝑓𝑟𝑟𝑓𝑓𝑝𝑝 – torque applied on pinion from tooth friction [Nm] 
𝑀𝑀𝑓𝑓𝑔𝑔 = 𝐹𝐹𝑓𝑓𝑟𝑟𝑓𝑓𝑔𝑔 – torque applied on gear from tooth friction [Nm] 
𝐹𝐹𝑛𝑛 = 𝑘𝑘(𝑟𝑟𝑏𝑏1𝜑𝜑𝑝𝑝 + 𝑥𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2𝜑𝜑𝑔𝑔 + 𝑥𝑥𝑔𝑔) + 𝑐𝑐(𝑟𝑟𝑏𝑏1�̇�𝜑𝑝𝑝 + �̇�𝑥𝑝𝑝 − 𝑟𝑟𝑏𝑏2�̇�𝜑𝑔𝑔 + �̇�𝑥𝑔𝑔) –  normal meshing force [N] 
𝐹𝐹𝑓𝑓 –  tooth friction force [N] 
𝐹𝐹𝑑𝑑 = √𝐹𝐹𝑛𝑛

2 + 𝐹𝐹𝑓𝑓
2 –  dynamic meshing force [N] 

𝑟𝑟𝑓𝑓 – moment arm of sliding friction force [m] 
𝐹𝐹𝑘𝑘𝑏𝑏1𝑝𝑝 =  𝑘𝑘𝑏𝑏1𝑥𝑥𝑏𝑏1 – reaction force of Bearing 1 from stiffness parallel to the x(LOA) axis [N] (Subscript 2, 3, 4 – Bearing 2, 
Bearing 3, Bearing 4) 
𝐹𝐹𝑐𝑐𝑏𝑏1𝑝𝑝 =  𝑐𝑐𝑏𝑏1�̇�𝑥𝑏𝑏1 – reaction force of Bearing 1 from damping parallel to the x(LOA) axis [N] 
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