
49

INTRODUCTION

The task of looking for the ways to match and 
assemble elements together, referred to as puzzle 
folding, is a problem known, among others, in 
archaeology, forensic museums, medicine and 
cartography. Regardless of the scenario (cracked 
bone, broken ceramics, cracked tombstones, torn 
maps or pictures), there are the same difficulties 
in trying to put the pieces together again. The pro-
cess of reassembling is always accompanied by a 
degree of uncertainty: 
 • whether the available set of fragments is 

complete, 
 • whether the available set of fragments con-

tains only fragments of one object (maybe 
there are “false” elements),

 • whether it is possible to assemble the object 
precisely despite the existing defects in indi-
vidual parts of the object (worn out edge or 
damaged, wiped out image on the surface).
The assembling of puzzles is very often done 

by manual testing and inspection. These tasks, 

carried out by field experts (e.g. museologists, 
doctors), consume a lot of time and energy, and 
their effectiveness is not very great. In the cas-
es where the task of putting together the jigsaw 
puzzle is not critical (not a medical or forensic 
problem on which human health and life may 
depend), it is postponed and often remains unre-
solved for many years, and in extreme cases it is 
abandoned entirely. In such situation, any method 
of selection, classification or search for the pos-
sible combinations, and thus of generating alter-
natives, whether fully automatic or only partially, 
will be useful. 

The purpose of the work is:
 • to develop a method that will allow assem-

bling a 2D puzzle using linguistic methods, 
and essentially to use one of them – the Lev-
enshtein metric. 

 • confirmation of the correctness of the adopted 
method of describing the edges of the ele-
ments of objects by performing a numerical 
experiment with the use of a computer pro-
gram built.

A Search Method for Reassembling the Elements of a Broken 
2D Object 

Jerzy Montusiewicz1, Stanisław Skulimowski1*

1 Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University 
of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

* Corresponding author’s e-mail: s.skulimowski@pollub.pl

ABSTRACT
Searching for and reassembling the elements that used to form one whole is a very common issue faced by archae-
ologists. This is because preparing an interesting museum exhibition consists in the presentation of the objects 
that have been put together, not a pile of messily disassembled puzzle pieces. The article presents the concept of 
using the linguistic methods in the process of joining the elements of a 2D jigsaw puzzle. The method developed 
in the first stage creates the edge description of an object by defined unit vectors of the same length but different 
directions, and assigns them a designation in the form of letters, which leads to the creation of abstract words in 
the form of a sequence of signs. In the second stage, the words with a defined length of strings belonging to two 
different objects are compared. The authors have created a program that performs an exhaustive search until the 
pool of available elements is fully exhausted. The conducted numerical experiments indicate the correctness of the 
method and effectiveness in determining the places of joining elements. The developed method will be useful to 
automate the reassembly of 2D elements from archaeological excavations.

Keywords: exhaustive search, contour description, reassembling, linguistic methods, puzzle, apictorial

Volume 14, Issue 3, September 2020, pages 49–56
https://doi.org/10.12913/22998624/122570

Advances in Science and Technology 
Research Journal

Received: 2020.05.15
Revised: 2020.06.30

Accepted: 2020.07.15
Available online: 2020.07.25



Advances in Science and Technology Research Journal  Vol. 14(3), 2020

50

Background of the study 

In the contemporary literature, the problem of 
combining the fragments belonging to one object 
is very often referred to as a “puzzle”. This term 
is commonly associated with a form of entertain-
ment consisting in assembling a 2D image of 
many elements with usually unique contours ac-
cording to a printed pattern. The author of the first 
puzzles was the English cartographer John Spils-
bury, who in the second half of the 18th century 
created such puzzles as a teaching aid to learn 
geography [1]. The issues dealt with by the sci-
entists are related to assembling the jigsaw puzzle 
without having the information about the original 
object as whole. 

The methods for finding the ways to combine 
the fragments of elements of destroyed objects 
can be divided into subgroups (Fig. 1). They have 
many variations, depending on: (i) the relevance 
and applicability of texture data, (ii) whether the 
purpose is to arrange the elements of an object 
or fragments of texture on the complete geometry 
[2] and (iii) the adopted projection of objects and 
the space in which they are checked (2D and 3D). 
The texture data can be used to rebuild the geom-
etry or to complete the texture itself.

It is not possible to do an explicit division of 
the existing methods based on the area of use (ar-
chaeology, medicine, forensic science). Each field 
of knowledge may use any method depending on 
the specific task and available object data. Due to 
the complexity of the problem (in the case of 2D 
methods, the problem is NP-completeness [3]) 
and the ambiguity of the data available, a combi-
nation of different methods or a cascade of meth-
ods is also used to increase the chance of finding 
solutions, or at least to find classifiers in order to 
narrow down the group of potential solutions. 

With regard to archaeological problems, spe-
cialist methods are being developed [4]. For the 
3D elements of vessels representing a known cul-
ture and having the axis of symmetry, the vessel 
profile (described e.g. by the curvature signature) 
[5] is used. Methods have also been developed for 
2D objects, using two features of the element: co-
lour and edge [6], edge only [7], as well as meth-
ods operating on general 3D objects using the 
description of both the area of the alleged contact 
and the curvature signature [8].

The methods based on examining the edge 
characteristics most often use the description per-
taining to the change of angles of short vectors 
placed one after another on the whole perimeter. 
This description is used to study angle variability 
using trigonometric functions [9]. Another way of 
describing the object’s contour is to locate short 
vectors on the whole perimeter and assign them 
names resulting from the averaged absolute di-
rection [10]. The compass rose (CR) figure, also 
called windrose or rose of the winds, is used for 
such a record. 

In the scientific literature, one can find an 
application in describing change of the edge di-
rection of linguistic objects [11], technical ones 
[12] or images [13] of chain codes. However, the 
solutions used there do not represent full informa-
tion about the edge of objects, e.g. its total length. 
Eight-element Freeman’s codes have different 
lengths for the orthogonal directions, and others 
for the diagonal ones. Thus, they are not invari-
ant codes in their classical form. These codes are 
used to describe the edges at the level of a pixel 
image of objects.

The authors propose a new formula of string 
codes, which eliminate the disadvantages de-
scribed above by creating the contour descrip-
tions with information about both the shape and 
length of objects.

Fig. 1. Schematic diagram of the classification of methods of searching for ways of arranging elements; 
in orange – a thematic area including the authors’ method 



51

Advances in Science and Technology Research Journal  Vol. 14(3), 2020

METHODOLOGY OF ASSEMBLING 
A 2D PUZZLE 

The authors propose a new method of match-
ing a 2D puzzle, based on the information about 
the edges of the elements, omitting information 
about their texture. According to the presented 
classification of the assembling methods, the au-
thors’ idea belongs to the group of shape-based 
polyform puzzle (Fig. 1). This method can be 
used in archaeology, where large collections of 
fragments of objects with unique edges and uni-
form texture can be found (e.g. fragments of mo-
saics, ceramics, porcelain, bricks, etc.). 

The developed method consists of three main 
stages (Fig. 2): 
 • Stage 1 – recording the edges of elements in 

the form of a character code,
 • Stage 2 – sorting the existing elements accord-

ing to the selected criterion,
 • Stage 3 – recurrent comparison of the ele-

ments with the use of linguistic metrics. 

Recording the edges of an element

The authors have developed their own record-
ing system for edges, which can be classified as a 
recording family using the CR figure. The created 
notation was defined by four features:
 • c1 – number of directions to which an object’s 

circumference can be averaged (n), 
 • c2 – angle between successive directions 

(a=360/n),
 • c3 – length of single vector (l),
 • c4 – a written mark denoting the name of each 

direction. 

Using three features: c1, c2, c3, it is possible 
to change the resolution of a discrete recording of 
an object’s edges. The resolution is the higher the 
greater the c1 and the smaller the c3. The resolu-
tion is the smaller the c1 and the greater the c3. 

After calibrating the c1, c2 and c3 features, an 
object edge outline is created (Fig. 3c) for a given 
object in a 2D projection (Fig. 3a), using the de-
fined vectors (Fig. 3b). Next, a marker record is 
created on the basis of markings resulting from 
feature c4 (Fig. 3d). 

In this way, a discrete record of the object’s 
edge is obtained in the form of a character string. 
Thus, the process can be compared to writing 
Logo Drawing Commands [14], scout’s Closed 
Course game [15], or Turn-by-turn navigation 
[16]. The contour description prepared in such a 
way is invariant to the rotation and selection of 
the starting point (Fig. 4). 

Assuming that all elements of the set will be 
described in this way, comparing the edges of 
these elements can be done using not only math-
ematical methods but also linguistic metrics. 

Levenshtein’s metrics 

Levenshtein’s metrics (LM) belongs to the 
linguistic measures and is the edit distance that 
takes into consideration the insertion, deletion, 
substitution and transposition of two adjacent 
characters. It is used, among others, in medicine 
to check the similarity of DNA chains [17]. Two 
strings are identical when the measure LM=0. For 
each difference occurring in the compared strings 
a penalty of 1 is granted, e.g. the state of letter 
inconsistency in the same position (puck – pick), 
adding a letter (party – partly), removing a letter 
(shortly – shorty).

The method presented by the authors assumes 
the use of the Levenshtein measure to check the 
similarity of character strings corresponding to 
fragments (e.g. sides) of objects. This is done by 
reversing the sequence of one of the objects and 
comparing it with the unreversed sequence of 
other objects (Fig. 5).

Fig. 2. Stages of the original method of matching 2D elements 



Advances in Science and Technology Research Journal  Vol. 14(3), 2020

52

Searching for possible matches

The procedure developed for creating match-
es is based on an exhaustive search and consists 
of always comparing two elements in pairs. The 
comparison of elements is based on a defined m-
elemented character code, i.e. a fragment of a se-
quence which is always separated from the first 
element. 

The matching of each two elements can take 
place in many ways when the elements have edg-
es that can be joined in multiple combinations. 
In such a case, the procedure may include check-
ing each of these ways. The number of possible 
matches is dependent on the length of the com-
pared character strings and the minimum length 
of the compared parts of the character strings. 

The pessimistic number of comparisons of two 
elements can be represented by the formula:

|𝐾𝐾𝑝𝑝1,𝑝𝑝2| = (|𝑝𝑝1 − 2| − 𝑚𝑚𝑚𝑚) ∗ (|𝑝𝑝2 − 2| − 𝑚𝑚𝑚𝑚) (1)

where: K – a set of all possible ways to match the 
elements p1 and p2, p2 – elements being 
compared,

 |𝑝𝑝𝑖𝑖|  – length of the character string of the 
i-th element,

 ms – minimum length of the marker string 
of the fragment being compared,

 2 – number of uncertain characters at the 
beginning and end of the string. 

For each of the available initial elements 
(available in the set of fragments at the beginning 
of the procedure) it is checked if it matches the 

Fig. 5. Example of the reversal of an object’s character string

Fig. 3. An example of making a character notation: a) object, b) eight-point CR; c) object edge notation using 
CR vectors (red point – start position, red arrows – direction of contour drawing); d) character code after chang-

ing vectors into characters

Fig. 4. Example of execution of an object rotation by a multiple of the angle defined in c2 – description proper-
ties will remain the same



53

Advances in Science and Technology Research Journal  Vol. 14(3), 2020

next ones in the list of elements. If so, a new char-
acter code describing the new element is created 
on their basis. Then for this new element, the pos-
sibility of matching with other (existing elements 
in the set of initial fragments) subsequent ones 
in the list of available elements is checked. Each 
check always applies only to two elements (two 
original ones with each other or the assembled 
one with the original one). The number of possi-
ble results in terms of the elements used from the 
set of available elements (E), assuming that the 
available elements certainly come from a single 
puzzle, is equal:

|𝑆𝑆| =
(𝑛𝑛 − 1)𝑛𝑛

2 (1 +∑(∏𝑗𝑗
𝑛𝑛−2

𝑗𝑗=𝑖𝑖
)

𝑛𝑛−2

𝑖𝑖=1
) , 𝑆𝑆 = {𝑠𝑠1,, 𝑠𝑠2,… , 𝑠𝑠𝑚𝑚}, 2 ≤ |𝑠𝑠| ≤ 𝑛𝑛, |𝐸𝐸| = 𝑛𝑛 

|𝑆𝑆| =
(𝑛𝑛 − 1)𝑛𝑛

2 (1 +∑(∏𝑗𝑗
𝑛𝑛−2

𝑗𝑗=𝑖𝑖
)

𝑛𝑛−2

𝑖𝑖=1
) , 𝑆𝑆 = {𝑠𝑠1,, 𝑠𝑠2,… , 𝑠𝑠𝑚𝑚}, 2 ≤ |𝑠𝑠| ≤ 𝑛𝑛, |𝐸𝐸| = 𝑛𝑛 

(2)

where: E – a set of basic elements,
 n – number of basic elements,
 S – an orderly set of possible assemblies, 

taking into account the fact that the basic 
elements belong to the assembly, without 
taking into account the way of matching 
the elements to each other, and each as-
sembly can consist of any number of ele-
ments from 2 to n.

In order to reduce the number of comparisons 
and potential solutions, a number of limitations 
have been introduced into the procedure, allow-
ing for precise clarification of the way of conduct-
ing the search and an automatic decision on the 
significance of the comparisons performed. 

Programme description 

The prepared program LiMePuRe2D (Lin-
guistic Methods of Reassembling 2D Puzzle) was 
written in C#, in the Visual Studio environment. 
The program uses the prepared list of strings that 
mean a containing the ID and discrete record of 
the edges of the objects to be examined. It also 
includes generating the instructions of assembly 
solutions in the form of step-by-step instructions 
in the graphic and text forms. In this way it was 
possible to check the list of potential solutions 
found. In the pilot version of the program to com-
pare pairs, elements are selected by drawing from 
a pool of string lists. The possible match is re-
membered and the process of searching for the 
next matching element is continued. 

RESULTS AND DISCUSSION

In order to check the effectiveness of the 
method and the operation of the program, an ex-
ample was prepared that included a set of several 
elements that fit together to form a compact puz-
zle. Thus, the set was prepared in a pre-assembled 
form. The characteristic feature of this example 
is that the fragments of the sign strings separated 
from individual elements are repeated in at least 
one other fragment. This causes the program to 
generate alternative assemblies of individual ele-
ments. In this way the authors wanted to check 
whether the program: would be able to recreate 
the shape originally assumed by the authors and 
how it would deal with alternative combinations. 

Character representation of object edges and 
number of characters pi:  1. BBDBACABACD-
CEDCDCEDECECEDEGFGGFGEGGGHGH-
GHGHAAGA / p1=47;

2. CDDEEFECEDECECEDEF-
F E G H F F G G G H H A G A H A G A G A -
HABBCBBCAACB / p2=51;

3. FFGEEGFFGFFGHGHAGHABABA-
BACCACB CCBDDEDDEC / p3=41;

4. CEDDFFEEDFGGGFGHAGAGAHAC-
CACBCCB / p4=32;

12. GFFEGHFGHAGFGAHAGAGA-
HAGHGHABBAHAABCBCBCBDDBDCD-
DCCDDC DFEDEEEDEEFFE / p12=65.

Figure 6 presents a sign description of the ele-
ments selected for the experiment. A graphic rep-
resentation of the elements tested is made up of 
unclosed contours. It results from the limitations 
of the compass rose resolution (c1, c2, c3). The 
total length of vectors does not always coincide 
with the actual circumference length of the ele-
ment. In order to limit the possible errors when 
comparing elements, the program does not take 
into account two extreme vectors (first and last).

The experiment was conducted in several vari-
ants: with a change in the number of the possible 
combinations of each of the two elements (PCC), 
and with a change in the threshold value for the 
Levenshtein method (value 0 – full match and 1 – 
match with one error). For all the attempts, it was 
assumed that the minimum length of the strings 
to be compared was ms=5. In the process of com-
paring the two elements, the “slide” method was 
used for both elements. For each of the first ele-
ment’s substrings, a comparison was made with 
all the substrings of the second element. The 



Advances in Science and Technology Research Journal  Vol. 14(3), 2020

54

joists in this comparison were constructed from 
every five consecutive characters in the element 
(0 to 4, 1 to 5, 2 to 6, etc.) except the first and last 
character (Ex. 1). The substrings were checked 
for the best match of the sign string in terms of 
the Levenshtein method.

Each of the variants was repeated many times 
for a precise measurement of the actual time of 
making comparisons and connections (excluding 
the markup of the programming environment). 
The test program was run on a machine with an 
i7–4770, 3.90 GHz processor and 16GB RAM. 

In the experiment, for pair comparison, the el-
ements were taken at random. It should be noted 
that the puzzles for testing the program were pre-
pared in such a way that there were many alterna-
tive ways of combining the components that did 
not comply with the patterns (Fig. 8). 

In the prepared test pattern (Fig. 6), ele-
ment 12 is combined with an element that was 
not available in the numerical experiment. The 
analysed sequence of five characters allows con-
necting two different elements to the same side: 
element 1 and element 2. In the case shown in 
Figure 8d it can be seen that between elements 2 
and 12 there is a collision in the further part of the 
connected sides. This means that the selection of 
the length of the string to compare both elements 
is an important value and determines the number 
of possible comparisons (Ex. 2) as well as the 
correctness of the searched connections. The case 
presented in Fig. 8a shows the situation that the 
pattern connection between elements 4 and 2 is 
realised on a 4 character long string. Of course, 
when the elements 1 and 2 have already been con-
nected, analysing the substring of length 5 will 
bring the right solution. 

Fig. 6. The assumed way of matching the prepared elements with the com-
pass rose figure used, blue point – starting point

Fig. 7. Examples of connection of elements: (a) connection from pattern, (b) correct alternative connection, 
(c) correct alternative connection, (d) incorrect alternative connection



55

Advances in Science and Technology Research Journal  Vol. 14(3), 2020

The results are presented in Table 1 with: num-
ber of connection options tested – NCOT, number 
of connections made – NCM, number of final re-
sults – NR and average program running time.

The NCOT determines the total number of 
comparisons made for each of the two 5-char-
acter-long substrings, regardless of the Leven-
shstein metric result. This value is the resultant 
of checking all possible ways of connecting el-
ements (Ex. 1) and the number of ways of se-
lecting the elements for checking connections 
(Ex. 2). The NCOT depends strictly on PCC, LM 
and NCM. NCM is a number that indicates how 
many matches there are for each bonded part of 
all the other parts that do not form a part of the 
bond. This number is difficult to predict, but from 
the experiment it can be concluded that even a 
simple example is able to generate a large number 
of tests, so it is necessary to introduce the optimi-
sation mechanisms and screening algorithms that 
will reject certain paths before the calculation is 
continued. At present, in the prototype version of 
the program, no mechanism has been implement-
ed yet. NCM determines the number of the suc-
cessfully completed assemblies, i.e. the ones that 
have been successfully implemented: are unique, 
meet the accepted criteria of the Levenshtein met-
ric and their execution does not cause the overlap-
ping of elements (Fig. 8d). Determination of the 
ratio of the NCM to the NCOT numbers (which is 
from 0.02% to 0.08%) shows that there are great 
possibilities and at the same time the necessity 
to develop a mechanism of prediction assembly 
places for elements. 

On the basis of the results obtained, it can be 
concluded that the time of operation execution in-
creases exponentially along with the number of test-
ed combinations and with the increase in the mar-
gin of error in determining the matching of strings 
using the Levenshtein metric. A minimal increase 
in LM results in a significant increase in the number 
of possible assemblies. Each assembly means that a 
new search for subsequent matches has to be start-
ed, which significantly extends the whole process. 
Assuming an even probability distribution of the 
possible assemblies for each substring of the tested 
element, it is necessary to check all the possible 
connections and wait until the program completes 
all actions. With a large number and high complex-
ity of objects to be checked, without optimisation 
mechanisms, the process may prove too long to be 
carried out in a reasonable time.

The prototype version of the program was 
able to correctly determine the assembly of four 
adjacent elements according to the prepared pat-
tern, and that with the first, the simplest of the 
adopted search variants – LM=0 and PCC=1. The 
program also suggested the possibility of match-
ing the fifth element (No. 12) according to the 
adopted assumptions of the method. The exam-
ple connections are presented in Figure 8. While 
analysing the results, it was found that in each of 
the variants nearly half of the assembly possibili-
ties found were very similar to each other (e.g. 
they differed in the shift of the last connected ele-
ment). The exception is the most extensive vari-
ant (LM=1, PCC=5) where the number of similar 
elements was about 80%.

Table 1. Results of the experiment to determine the possible assemblies for the assumed PCC and LM parameters

PCC
LM=0 LM=1

NCOT NCM NR Time [s] NCOT NCM NR Time [s]
1 318919 60 24 3.735 701931 159 60 8.377
2 511441 95 49 6.227 4045269 1564 949 68.418
5 511441 95 49 6.206 34510887 26904 21404 619.444

Fig. 8. Examples of the obtained assemblies, elements with numbers: a) 1 and 4, b) 1,4,3,2,12 – looking at the 
object from above, c) 1 and 3



Advances in Science and Technology Research Journal  Vol. 14(3), 2020

56

The number of assembly results (NR) to 
which it is no longer possible to assembly other 
elements, or there is a lack of elements that can be 
assemble, increases along with the PCC and LM 
values. However, this does not mean that the so-
lutions found are correct in terms of the best fit or 
packaging of the elements. The connection shown 
in Figure 8a shows the correct alternative gluing 
of elements 1 and 4 – different from the pattern 
in Figure 6 (elements 1 and 4 are connected with 
other sides). The assembly of elements 1 and 3 
shown in Figure 8c was made in accordance with 
the pattern in Figure 6. The alternative assembly 
of the same elements shown in Figure 8b did not 
match the pattern (Fig. 6.). In a situation when 
one does not have the remaining elements from 
the pattern, it is impossible to say whether this as-
sembly is correct or just a solution without errors. 
Testing the program on the supplied elements 
shows that few of the generated solutions were 
constructed on the basis of 4 or 5 elements. The 
most common solutions were those consisting of 
2 elements, which from the perspective of search-
ing for the best matches is unexpected. Such solu-
tions had no further continuation and were elimi-
nated in further search. 

CONCLUSIONS

The results obtained in the numerical experi-
ment allow drawing the following conclusions:
 • the description of the element contours using 

an eight-element unit rose of vectors contains 
enough information to perform the correct as-
sembly of elements,

 • the developed method based on the Levensh-
tein metric, belonging to the linguistic mea-
sures, allows finding the possible matching 
solutions for a 2D puzzle,

 • the constructed computer program correctly 
executes the described method and procedure, 
and the correct definition of the length of the 
character string to compare the matching of 
elements allows for the calculations to be per-
formed in a dozen or so seconds,

 • in the tested version of the program, the final 
verification of the assembly of individual ele-
ments was graphically verified. 

REFERENCES

1. Lau C., Schwartzburg Y., Shaji A., Sadeghipoor 
Z., Süsstrunk S., Creating Personalized Jigsaw 
Puzzles, In Proceedings of the Workshop on Non-
Photorealistic Animation and Rendering (NPAR 
’14). Association for Computing Machinery, New 
York, NY, USA, 2014, 31–39. 

2. Guo K., Chen X., Liu Y., Zhou B., Guo Y., Geo-
metric Based Structure Propagation and Texture 
Matching for 3D Texture Completion, Internation-
al Conference on Virtual Reality and Visualization, 
Xi’an, 2013, 87–93.

3. Demaine E.D., Demaine M.L., Jigsaw Puzzles, 
Edge Matching, and Polyomino Packing: Connec-
tions and Complexity, Graphs and Combinatorics 
23, 2007, 195–208.

4. Rasheed N.A., Nordin M.J., A Survey of Computer 
Methods in Reconstruction of 3D Archaeological 
Pottery Objects, International Journal of Advanced 
Research, 2015, 712–724.

5. Willis A. R., Computational Analysis of Archaeo-
logical Ceramic Vessels and their Fragments, Digi-
tal Imaging for Cultural Heritage Preservation, 
2011, 323–352.

6. Zhou M., Geng G., Wu Z., Zheng X., Shui W., Lu 
K., and Gao Y., A System for Re-assembly of frag-
ment Objects and Computer Aided Restoration of 
Cultural Relics, Virtual Retrospect 2007, 21–27.

7. Kong W., and Kimia B., On solving 2D and 3D 
puzzles using curve matching, Computer Vision and 
Pattern Recognition, Proceedings of the 2001 IEEE 
Computer Society Conference on, 2001, 583–590.

8. Andreadis A., Papaioannou G. and Mavridis P., 
Generalized Digital Reassembly using Geometric 
Registration, 2015 Digital Heritage, 2015, 549–556. 

9. Freeman H., Davis L., A Corner-Finding Algo-
rithm for Chain-Coded Curves, IEEE Transactions 
on Computers, 1977, 297–303.

10. H. Freeman, L. Garder, Apictorial Jigsaw Puzzles: 
The Computer Solution of a Problem in Pattern 
Recognition, IEEE Transactions on Electronic 
Computers, 1964, 118–127. 

11. Aini N.A., Dewi N., Azurah A.S. Freeman chain 
code as representation in offline signature verifica-
tion system, Jurnal Teknologi, 2016, 89–94.

12. Grabowik C., Kalinowski K., Ćwikła G., Gwiazda 
A., Monica Z., Zastosowanie kodów łańcuchowych 
do opisu konstrukcji oraz identyfikacji konstruk-
cyjnych obiektów elementarnych, Innowacje w 
zarządzaniu i inżynierii produkcji, 2017, 180–190.

13. Karczmarek P., Kiersztyn A., Pedrycz W., Dolecki 
M., An application of chain code-based local de-
scriptor and its extension to face recognition, Pat-
tern Recognition, 2017, 26–34.

14. Ernest P., What’s the Use of LOGO?, Mathematics 
in School, JSTOR, 1988, 16–20. 

15. Eureka!, 3 compass games that teach kids to use 
a compass, https://www.eurekacamping.com/blog/
article/3-compass-games-teach-kids-use-compass, 
access: 07.04.2020

16. Kenneth J.B., Hensher D.A., Handbook of trans-
port systems and traffic control. Emerald Group 
Publishing, 2001, 497. 

17. Buschmann, T., Bystrykh, L.V., Levenshtein error-
correcting barcodes for multiplexed DNA sequenc-
ing, BMC Bioinformatics 14, 2013, 272.


