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INTRODUCTION

The paper concerns lateral torsional buck-
ling (LTB) analysis of beams in steel grillages 
(Fig. 1), in which both primary (substrings) 
beams and also coupling beams are prone to over-
all stability failure.

The task of the grillage secondary beams 
(Fig. 1) is to ensure a coaction in the transfer of 
loads between primary beams. Additionally, the 
secondary beams provide point protection to pri-
mary beams against the overall stability failure, 
i.e. LTB. In order to account for point support of 
substring beams of the grillage, it is necessary to 
use an adequate solution as regards the connec-
tions between the beams. In the study, it was as-
sumed that beam joints were designed in such a 
way that this issue was addressed.

The advantages of point protection of gril-
lage primary beams against LTB were discussed, 

among others, in studies [8,12,14]. Discrete brac-
ings of beams can be divided into those that re-
strict the lateral displacements of beams in the 
LTB plane [12,14] and those that restrict the tor-
sion of beams [8,12,14]. The effectiveness of the 
bracing intended to counteract the lateral displace-
ments depends on their location over the height of 
beam section. The greatest effectiveness is found 
for the bracing located in the plane of compres-
sion (usually top) flange of beams. However, the 
restraint of the tension (usually bottom) flange  
produces a small effect on an increase in the lat-
eral torsional buckling resistance of beams. In 
turn, the advantageous effect of point bracing that 
restricts the beam torsion is virtually independent 
of the ordinate of their location. The effectiveness 
of point protection options of beams against LTB 
depends on the number of bracings and their lo-
cation along the beam length. Adequate design of 
point bracings enables to simultaneously restrict 
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lateral displacement and torsion of beams. The 
stability analysis of braced grillage beams, for 
different arrangements and bracing degrees, can 
be conducted for individual beams [8,14] or the 
whole structure [12].

In this study, the point bracings that prevent 
the lateral displacement in the LTB plane of com-
pression (top) flanges of primary beams were 
taken into account. It was assumed that due to the 
adequate bracing system, secondary beams pro-
vided stable support to primary beams.

The LTB (lateral torsional buckling) of prima-
ry beams in steel grillages was analysed. The cri-
terion, specified in PN-EN 1993–1-1 (EC-3) [5], 
concerning the maximum spacing of point lateral 
bracings that stabilise the top compression flanges 
of the beams of concern was verified. The critical 
moments of LTB for primary beams were evalu-
ated using two methods: a) FEM, where the nu-
merical solution was obtained with LTBeamN [6] 
and Abaqus [1] software tool, in which primary 
beams were modelled together with point lateral 
bracings, and b) analytical method, in which an 
equivalent loading diagram was applied and the 
author-developed formula was used.

Lateral torsional buckling of steel beams

Lateral torsional buckling resistance of beam 
elements that are laterally unbraced is expressed 
by formula [5]:

γχ  (1)

where:	χLT – LTB coefficient;

	 Wy – section resistance index in bending 
around axis y-y, dependent on section 
class;

	 fy – yield strength;
	 γM1 – partial coefficient (γM1 = 1.0).

The value given by the formula (1) depends 
on the material, the section geometry and LTB co-
efficient χLT. In accordance with [5], the LTB coef-
ficient can be evaluated according to a general or 
special case.

The general case concerns the beams with a 
constant cross-section, for which LTB coefficient 
is expressed by formula [5]:





λΦΦ

χ  (2)

where:	   



  λλαΦ   – LTB 

curve parameter; αLT – imperfection factor 

for LTB; λ    – relative slender-

ness for LTB; Mcr – critical moment for 
elastic LTB.

Special case concerns rolled and welded I-
beams, and allows the estimation of coefficient 
χLT acc. formula [5]:











λλβΦΦ

χ  (3a)

where:	     



  λ   – 

LTB curve parameter.

The code [5] recommends to adopt the fol-
lowing parameters: λ   (maximum 

Fig. 1. Exemplary grillage: a) diagram, b) selected grillage fragment.  
(B1, B3 – primary beams, B2 – secondary beams, S1 – columns)
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value) – maximum slenderness ratio for LTB of 
rolled sections, β = 0.75 (minimum value) – correc-
tion parameter of the LTB curve for rolled sections.

The second case offers a relevant advantage 
that the distribution of the bending moment be-
tween lateral bracings can be taken into account. 
A modified LTB coefficient [5] can be used 
to this end:








λ

χχ  (3b)

where:	     



  λ  ;

	 kc – coefficient that accounts for the distri-
bution of moments acc. [5].

In the case of bisymmetric I-beams, often 
used in engineering practice, while estimating 
LTB coefficient, the designer can use both for-
mula (2) and formulas (3a) or (3b). On the ba-
sis of the subject literature analysis , among oth-
ers [9], and the author’s calculations, it was found 
that the values of coefficient χLT obtained from 
formula (2) are lower than from formulas (3a) or 
(3b). Therefore, the application of formulas (3a) 
or (3b) gives lower reduction in the load capacity 
of beams, which results in more economic design.

Regardless of which method is employed, in 
order to determine LTB coefficient χLT, it is nec-
essary to estimate the critical moment of LTB of 
beam. The value of the moment depends, among 
others, on: 1) boundary conditions, 2) the distri-
bution of the bending moment over the beam, and 
3) the ordinate of the site at which the transverse 
load is applied along the beam section height. In 
standard [4], and in many studies on the analysis 
of stability failure of beams under planar bending, 
among others, in [2,7,9,10,11, 13], the formulas 
for the critical moment of LTB of fork supported 
beams loaded in the way most frequently found in 
the engineering practice were provided.

Point protection of beams against LTB

In accordance with the code [5], the beams 
with properly braced compression flange, and also 
the beams with closed circular or square cross-
section are not susceptible to LTB. Continuous or 
point bracing systems are available for the com-
pression flange of beams. As regards steel grillag-
es, point supports of primary (substrings) beams 
come in the form of secondary (coupling) beams.

In order to account for point protection of sub-
strings beams against LTB, it is required that the 

condition of spacing of coupling beams should be 
satisfied [5]:

λλλ   (4)

where: kc – correction coefficient, dependent on 
moment distribution; 	 Lc – spacing of 
lateral bracings that stabilise the compres-
sion flange of beams;

	 if,z – radius of inertia of the section of the 
equivalent flange, consisting of the com-
pression flange and 1/3 of the compressed 
part of the web, with respect to z-z axis of 
the section;

	 ελ    – comparative slenderness for 
compression;

	 Mc,Rd – bending resistance of the beam 
section;

	 My,Ed – maximum design bending moment 
between bracings;

	 λ   – maximum slenderness ratio of the 
beam compression flange.

In the code [5], a certain discrepancy is found 
as regards how maximum slenderness ratio λ   
of the beam compression flange was specified. 
This is related to the following:
a)	in section 6.3.2.4 (1)B [5] it was stated that: 

“Maximum slenderness ratio λ   can be 
provided in the National Annex. It is recom-
mended to assume that  λλ  , see 
6.3.2.3.”, which for λ   (acc. 6.3.2.3) 
gives λ  ;

b)	in the National Annex [5] it was stated that: 
“It is recommended to assume the maximum 
value λ  ”.

Simple transformation of formula (4) produc-
es dependence (5) that makes it possible to deter-
mine the maximum spacing of secondary beams, 
at which acc. [5], primary beams are not in danger 
of LTB:

λλ
  (5)

Critical moment of LTB Mcr

This study aims to check whether, provided 
that the spacing of secondary beams in the gril-
lage determined from formula (5) is maintained, 
primary beams are protected against LTB (i.e. if 
χLT ≥ 1). The analysis covered simply supported 
beams (Fig. 2), point-braced at 1/4, 1/2 and 3/4 of 
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the span, respectively. Concentrated (Pz) or uni-
formly distributed (qz) load was applied to the top 
flanges of beams (zg = +h/2).

The spans of primary beams of grillages 
were selected based on the spacings of secondary 
beams, determined with formula (5), i.e. L = 4Lc 
(Fig. 2).

For the analyzed beams, the critical moment 
of LTB Mcr was estimated analytically and deter-
mined numerically (FEM).

Mcr estimated analytically (simplified solution)

For analytical determination of the critical 
moments of LTB of primary beams, a simplified 
model was used (Fig. 3). An equivalent loading 
diagram was employed. The diagram was made 
for the reduced spans of beams Lc, specified by 
the spacing of lateral bracings, in which original 
loads (Pz, qz) were replaced with concentrated mo-
ments applied at the site of beam support. It was 
assumed that the beams were simply supported.

Critical moments of LTB for equivalent load-
ing diagrams of beams (Fig. 3) were estimated us-
ing formula [10]:

 
  (6)

where:	 Iz, It, Iw – characteristics of beam sections;
	 Lc – beam span;
	 E, G – steel moduli of elasticity; 

ψψ 
   – coefficient 

for the beam loaded with concentrated 
moments above the supports (coefficient 
dependent on the loading diagram); 

	 ψ – the ratio of support moments -1 ≤ ψ ≤ 1 
(Fig. 3).

Mcr determined numerically – FEM

In order to verify the recommendations in the 
code (4) [5] and the correctness of the equiva-
lent (simplified) loading diagram used for pri-
mary beams (acc. section 4.1), the LTBeamN and 
Abaqus (FEM) software tools were employed.

LTBeamN (ver. 1.0.3) software [6], based on 
finite beam elements, is dedicated to the structural 
engineering applications. It allows the determina-
tion of the critical moments of LTB for beams 
(single-span or continuous, and also cantilevers) 
with mono- or bi-symmetric I-sections. The tool 
makes it possible to account, among others, for 
the following: 1) both classic boundary condi-
tions (fork support or restraint) and also elastic 
bracings (above the support and over the length 
of beams as point or continuous bracings), 2) ar-
bitrary number and type of transverse loads, and 
also loads in the form of axial forces (loads can 
have an arbitrary ordinate of the application site 
and arbitrary sense of the force).

Using LTBeamN, the analysed beams were 
modelled for their full span, i.e. L = 4Lc, taking 
into account the point lateral bracings in the plane 
of top flanges of beams. The results of calcula-
tions for an exemplary IPE450 beam with span 
L = 6.88 m are shown in Figure 4.

The Abaqus (ver. 6.12) software [1], based on 
FEM, is used mainly for the research purposes. 
In this study, it was used for the LTB analysis of 
exemplary primary beams with point bracing. 
In modelling, volumetric elements (C3D8) with 
eight nodes and six degrees of freedom in the node 
were used. The primary beams were discretized 
into finite element model with the basic 10 mm 
mesh size. The boundary conditions at the sup-
ports prevented displacements with respect to the 

Fig. 2. Diagrams of analysed beams: a) concentrated force load,  
b) uniformly distributed load, c) cross-section, d) axonometric view.
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principal axes of the section inertia, and along the 
longitudinal axis for one of the supports. The load 
was applied to the top flange of the beam. The 
computations were run for the elastic range using 
the computational step of the buckling procedure.

Figure 5 shows the results of the analysis per-
formed with the Abaqus program for the beam 
shown in Figure 4.

Examples

The analysis was conducted for steel beams 
(E = 210GPa, G = 81GPa, S355) fabricated from 
HEB280, IPE450, I400 sections (Table 1) with 
a span of L = 4Lc. The exemplary cross-sections 
of beams (Table 1) were chosen due to the simi-
lar value of the section strength index Wel,y. The 
beams were loaded, in the plane of the top flange, 
with concentrated force Pz or uniformly distrib-
uted load qz (Fig. 2). The beam loads (Pz, qz) 

were applied in the form of unit forces. Primary 
beams were transversely point-braced by means 
of secondary beams, which were spaced at 
distances of Lc.

When determining the spacing of secondary 
beams with formula (5), the following assump-
tions were made (acc. [5]):
a)	correction coefficient:

kc = 0.86 – for the load of a force concentrated 
at the midspan (Fig. 3a)
kc = 1.0 – for uniformly distributed load; the 
coefficient was adopted assuming a constant 
distribution of bending moment between sec-
ondary beams, i.e. for ψ ≈ 1.0 (Fig. 3b)

b)	maximum slenderness ratio for the compres-
sion beam flange: λ  

As already mentioned (see section 3), the code 
[5] recommends to adopt two values of the slen-
derness coefficient, i.e. λ   and λ  . 
The higher value of the coefficient was used in this 

Fig. 4. Exemplary beam modelled with LTBeamN

Fig. 3. Equivalent loading diagrams of: a) concentrated force, b) uniformly distributed load.
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study, because the spacing of secondary beams 
(Lc) increases along with the coefficient value. 
For example, for HEB200 beam, loaded with 
concentrated force Pz in the middle of the span, 
for λ   it was obtained Lc = 3.324 m, while 
for λ   the distance was Lc = 2.659 m. With 
respect to the primary beams, this is a more unfa-
vourable variant, because it provides for a larger 
span of the beams (L = 4Lc).
c)	comparative slenderness in compression: 

λ1 = 76.435 (for S355)
d)	complete utilisation of resistance of beams: 

Mc,Rd = My,Ed
Table 2 lists the determined spacings of sec-

ondary beams and total spans of primary beams 
of grillages.

For the spacings of secondary beams shown 
in Table 2 (column 5) and the spans of primary 
beams (column 6), the critical moments of LTB of 
primary beams were estimated from formula (6) 
[10], and determined with LTBeamN and Abaqus 
(FEM) (Table 3). When the critical resistances of 
beams were known, the LTB coefficients were es-
timated acc. formula (3b) [5].

The coefficients of LTB (Table 3, column 7), 
calculated on the basis of critical moments deter-
mined with LTBeamN and Abaqus (for full spans 
L of primary beams), confirmed the correctness 
of formula (4) provided in the code [5]. The criti-
cal moments estimated with formula (6) [10] (for 
reduced spans Lc) produced LTB the  coefficients 
slightly lower than 1 for the uniformly loaded 

Fig. 5. Exemplary beam modelled with Abaqus

Table 1. Characteristics of sections [3]

Item Profile Wel,y 
[cm3]

Iz 
[cm4]

Iw 
[cm6]

It 
[cm4]

if,z 
[cm]

1 HEB280 1380 6590 1130000 144 7.48
2 IPE450 1500 1680 791000 68.9 4.52
3 I400 1460 1160 415000 183 3.65

Table 2. The spans of primary beams of grillages and the spacing of secondary beams

Item Loading diagram Profile
Spacing of secondary beams 

Lc [m] Spans of primary beams  
L = 4Lc [m]

Formula (5) Assumed

1
L

Pz

L/2

16
3Pz LPz

Pz
8

Pz L
8

Pz L

L
L/2

L
L/2

HEB280 3.324 3.320 13.280
IPE450 2.009 2.000 8.000

I400 1.622 1.620 6.480

2
L

L

L

L

qz

L
8

qz L2

L

16
3Pz L

Pz

L

L

L

Pz

Pz

qz

qz

qz

qz

qz
8

Pz L
8

Pz L
12

qz L2

12
qz L2

15
qz L2

20
qz L2

30
qz L2

HEB280 2.859 2.850 11.400
IPE450 1.727 1.720 6.880

I400 1.395 1.390 5.560
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beams, and χLT,mod = 1 for the beams loaded with 
a force concentrated at the midspan. It should be 
noted that LTBeamN and Abaqus accounted for 
the performance of the whole beam. The edge 
segments of beam provided elastic stiffening for 
the segments between the point lateral bracings 
(middle segments), whereas in formula (6) [10], 
fork support was assumed. That is reflected in 
the critical moments of LTB (Table 3, column 6). 
When determined through LTBeamN, they are 
greater than those estimated based on formula (6) 
[10]: for the concentrated force load (Fig. 2a) by 
approx. +18%, and for the uniformly distributed 
load (Fig. 2b) by approx. +24%. The values of the 
critical moments of LTB determined in the Abaqus 
software suite are between those determined with 
LTBeamN and estimated with formula (6) [10]. A 
major difference in the critical moments of LTB 
does not manifest itself in the values of the LTB 
coefficients (Table 3, column 7).

CONCLUSIONS

The results listed in Table 3 confirm the cor-
rectness of condition (4) specified in the code [5]. 
For the analysed grillage primary beams, when 
the spacing of secondary beams does not exceed 
the values determined through formula (5), the 
LTB phenomenon can be disregarded when the 
resistance of beams is determined. However, it 
should be remembered that secondary beams 

need to have appropriate rigidity and resistance. 
In addition, grillage must be provided with proper 
bracing system. If the loading diagram of beams 
and the ordinate of point protection of compressed 
(top) beam flange are changed, or the susceptibil-
ity of secondary beams is accounted for, it is nec-
essary to carry out a separate analysis of primary 
beams adopted in the design.

A good congruence of the results obtained 
confirms the suitability of the equivalent (sim-
plified) loading diagram (Fig. 3) proposed in the 
study for the analysed grillage primary beams. 
However, if it is necessary to take into account the 
full span of the beam when determining the criti-
cal moment of LTB, it is advisable from a techni-
cal point of view to use the LTBeamN program.

The analysis of point protection against LTB 
of the primary beams of the grillage was carried 
out while taking into account the secondary beam 
spacing Lc (5) specified for slenderness λ   
[5]. For the assumed value of the slenderness 
coefficient, the correctness of condition (4) [5] 
was confirmed. In the case coefficient λ  
[5] is adopted, a reduction in both the distance Lc 
and the span of the primary beams (L = 4Lc) is 
obtained. Consequently, to facilitate economical 
design and structure optimization (among others, 
a larger span of the primary beams and decrease 
in the number of secondary beams) slenderness 

λ   [5] should be chosen.
Protection against the loss of the flat form 

of bending of grillage primary beams may 

Table 3. Critical moments and LTB coefficients

Item Loading diagram Profile Span Mcr [kNm] χLT,mod (3b) [5]

1

L

Pz

L/2

16
3Pz LPz

Pz
8

Pz L
8

Pz L

L
L/2

L
L/2

xLc

MMz ψ

HEB280
L = 13.28m

LTBeamN 3155.70 1
Abaqus 3020.31 1

Lc = 3.32m formula (6) [10] 2674.46 1

IPE450
L = 8.00m

LTBeamN 3175.50 1
Abaqus 2926.90 1

Lc = 2.00m formula (6) [10] 2666.75 1

I400
L = 6.48m

LTBeamN 3259.10 1
Abaqus 2843.97 1

Lc = 1.62m formula (6) [10] 2765.49 1

2
L

L

L

L

qz

L
8

qz L2

L

16
3Pz L

Pz

L

L

L

Pz

Pz

qz

qz

qz

qz

qz
8

Pz L
8

Pz L
12

qz L2

12
qz L2

15
qz L2

20
qz L2

30
qz L2

xLc

MMz ψ

HEB280
L = 11.40m

LTBeamN 3232.20 1
Abaqus 3027.09 0.999

Lc = 2.85m formula (6) [10] 2611.02 0.987

IPE450
L = 6.88m

LTBeamN 3334.20 1
Abaqus 3012.72 0.989

Lc = 1.72m formula (6) [10] 2681.21 0.974

I400
L = 5.56m

LTBeamN 3365.50 1
Abaqus 2913.18 0.988

Lc = 1.39m formula (6) [10] 2718.93 0.979
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significantly increase their critical and limit re-
sistance. Additionally, the need to account for 
the interaction between the grillage beams in the 
design is also justified by the economic reasons. 
Lower steel consumption reduces the costs of 
project delivery.

In case the condition (4) set in the code [5] 
is not satisfied, the LTB phenomenon should be 
accounted for in the analysis of the resistance of 
primary beams in grillages.
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