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INTRODUCTION

High pressure die casting (HPDC) of alumin-
ium and copper alloys is the primary technology 
in manufacturing products for home appliances, 
automotive industry, etc. A detailed analysis of 
the technological process during high pressure 
die casting is very complex indeed due to me-
chanical and thermal fatigue, creeping, erosion, 
cavitation, dissolution of mould and metal com-
ponents, adhesion. The state of mechanical and 
thermal stresses in a HPDC machine plunger, 
covering the product pressing stage, has been 
determined. One of reasons standing behind too 
early destruction of plungers is an interaction 
of thermal internal stresses with longitudinal 
stresses generated by the cyclic process during 
their operation. In the fixed production cycle of 
die casting, after the start-up phase, it can be as-
sumed that thermal stresses do not alter during 
one operation cycle due to a high heat capacity 
of the mould. 

In [4] devoted to analysis of the mechani-
cal and thermal stress state in a plunger of the 
cold-chamber HPDC machine with a horizon-
tal shot sleeve, temperature distributions in the 
shot sleeve were discussed on the basis of [6, 
7]. In [4], the stress state was considered on the 
assumption of a homogenous temperature field 
in the plunger surroundings. Stress distributions 
were analysed for maximal temperature values 
on the contact surface of the machine plunger 
and the shot sleeve, that is to say, on the plunger 
outer surface. The temperature on the plunger 
inner surface is minimal, as the plunger interior 
is cooled with a cooling agent forced circulation. 
For comparison, calculations were conducted 
for four different materials used for plunger in 
cold-chamber HPDC machines, namely: grey 
pearlitic cast iron, high silicone bronze, beryl-
lium bronze and aluminium-iron-nickel bronze 
which is the source alloy for newly developed 
complex bronzes of high wear resistance and en-
hanced strength.
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In the present work, a distribution of stress 
state components for the non-homogenous sta-
tionary temperature field, i.e., for the conditions 
close to actual operation conditions of the plung-
er, is dealt with. The whole cycle including the 
time for dosing of molten metal lasts less than 
3 minutes, whereas the plunger loading is shorter 
than 30 ms (filling). In the case of the HPDC ma-
chine plunger, pressing pressure is a compressive 
axial load equal even up to 100 MPa, whereas 
the maximum load is equal to zero during dosing 
stage. From the viewpoint of fatigue resistance, it 
is a negative pulsating cycle.

One of most important tribological issues is 
to determine maximal mechanical and thermal 
stresses, including equivalent stresses, accord-
ing to the Huber-Mises-Hencky hypothesis. The 
materials the plungers are made of can be char-
acterized by various tensile and compression 
strengths. The compression strengths Rc are sig-
nificantly higher than the tensile strengths Rm. 
Thus, the allowable stresses in compression kc 
are higher than the allowable stresses in tension kr 
(i.e., kc > kr). In the considerations presented here, 
a tensile strength to compressive strength ratio: 
z=Rc/Rm>1 (or kc/kr>1) has been introduced. On 
the basis of the results presented in [4], a strength 
hypothesis that accounts for various maximal 
stresses in compression and tension, that is to 
say, the so-called Burzynski hypothesis, has been 
assumed.

In the technological process in the plane trans-
verse to the plunger axis, only radial, circumfer-
ential and tangential thermal stresses, caused by 
a temperature difference inside and outside the 
plunger, occur, whereas mechanical stresses are 
present along the longitudinal direction. Thermal 
stresses alter circumferentially from the maxi-
mal ones in the bottom part of the machine slot 
sleeve to the minimal ones in the upper part of 
the sleeve. Therefore, such a temperature distri-
bution for the flat stationary state and longitudinal 
stresses caused by the plunger pressing pressure 
in the technological process have been considered 
in the present study.

An analysis of the plunger/sleeve operation 
discussed here is based on a representation of the 
actual die casting process that takes place with 
a Buehler machine in the WIFAMA-PREXER 
company located in Lodz [4]. 

FORMULATION OF THE PROBLEM

In the present study, a temperature distribu-
tion in the HPDC machine plunger that is closer 
the actual one has been analysed. For the thick-
walled plunger/sleeve, a cylindrical system of co-
ordinates has been assumed. For the flat thermal 
stationary problem, the following temperature 
distribution is taken (Fig. 1):

 jjj cos)(ˆ)(),(~)(),( rTrTrTrTrT +=+= (1)
where:  pj 20 ££ , bra ≤≤

with the boundary conditions: 

aTarT  )( , bTbrT  )( , 0)(ˆ  arT , bTbrT ˆ)(ˆ    

aTarT  )( , bTbrT  )( , 0)(ˆ  arT , bTbrT ˆ)(ˆ    
(2)

Fig. 1. Long thick-walled cylindrical tube – plunger
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thus, according to (1) and (2), we have:

aTarT  ),(   and  cosˆ),( bb TTbrT   (3)

In order to derive relationships describing 
temperature distributions as well as mechanical 
and thermal stresses for the flat stationary prob-
lem, the following has been assumed [2, 5, 8]:
1. Kelvin’s phenomenon is neglected (an increase 

in temperature is accompanied by material 
strains);

2. There is no heat source (i.e., Q=0);
3. A temperature field is determined indepen-

dently of stresses and strains from the classical 
equation of conductivity, i.e., for the stationary 
problem;

4. A temperature curve has been assumed for the 
flat problem and it does not depend on the co-
ordinate z along the sleeve axial direction;

5. Thermal stresses are caused by the time-con-
stant temperature field;

6. Elastic and thermal properties of the pipe mate-
rial do not depend on temperature;

7. The longitudinal stresses  zs  do not depend on 
temperature and their stable uniform distribu-
tion has been assumed [1, 4]. 

The basic equations for the flat problem [2, 8] 
are expressed with the relationships:
 • Equations of heat conductivity in the flat sta-

tionary problem:
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 • Equation of equilibrium for the flat stress state: 
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•	 Geometrical relationships: 
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where: r  – sleeve radius,
 u – radial displacement,
 v – circumferential displacement,
  re  – radial strains,
  te  – circumferential strains,
 γrφ – modal strains,

  rs  – radial stresses,
  js  – circumferential stresses,
  js r  – tangential stresses,
 a  – pipe inner radius,
 b  – pipe outer radius (thus, we have 

bra ≤≤ ).
For the flat stress state (i.e.,  0=zs ), the re-

lationships between stresses and strains take the 
form:
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where: E – Young’s modulus,
 ν – Poisson’s ratio,
 α – linear expansion coefficient, 
and, moreover 

aTTT   (where: )ba TTT   

 

(8)

For the problem under consideration, the fol-
lowing boundary conditions are assumed:

         (9) 
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(9)

i.e., the radial stresses  rs  and the tangential 
stresses  js r  on both plunger/sleeve surfaces are 
equal to zero.

After substituting (6) into (7), relationships 
between components of the stress state and com-
ponents of displacements are obtained:
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where the following notations have been 
used: 
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According to the assumed stationary tempera-
ture distribution (1), boundary conditions (2) and 
(9), the solutions for the stress state components 
are predicted in the form: 

 
       (12) 

 
 

jssjssjs cos)(ˆ)(),(~)(),( rrrrr rrrr +=+=
jssjssjs jjj cos)(ˆ)(),(~)(),( rrrrr +=+=

jsjsjs jj sin)(ˆ),(~),( rrr rr ==
(12)

and the corresponding displacement state 
components as, respectively:

 
 

jjj cos)(ˆ)(),(~)(),( rururururu +=+=
jjj sin)(ˆ),(~),( rvrvrv == (13)

After substitution of (12) in equilibrium equa-
tions (5), two systems of equations are obtained, 
namely:
 • for the axially symmetrical stress state (i.e., 

for the state independent of the angle φ in 
(12), discussed in detail in [4])

0



rdr
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 (14)

with the following boundary conditions, ac-
cording to (9) and (12) 

 0)()( ==== brar rr ss (15)
 • for the flat stress state (i.e., for the state de-

pendent on the angle φ in (12)), they take the 
form: 
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with the following boundary conditions, ac-
cording to (9) and (12): 

  
 
0)(ˆ)(ˆ ==== brar rr ss
0)(ˆ)(ˆ ==== brar rr jj ss (17)

In Appendix I, the solutions obtained in [4] 
for the axially symmetrical state are presented. 
In Appendix II, a solution to the flat problem 
of the temperature distribution in the sleeve for 

 jj cos)(ˆ),(~ rTrT =  is described, whereas a so-
lution to the equilibrium equations for the flat 
stress state in the sleeve, corresponding to the 
temperature distribution according to Appendix 
II, is shown in Appendix III.

For the flat stress state with the compo-
nents  jj sss rr

~ ,~ ,~  (Appendix III), it can be eas-
ily noticed that when φ=0, then according to 
(12), the stress components  )(ˆ)~max( rrr ss = , 

 )(ˆ)~max( rjj ss =  and  0~ =js r . When φ=π/2, then 
 )(ˆ)~max( rrr jj ss =  and, moreover,  0~ ~ == jss r .

When the stress state components (12) 
 jjj sssss rrr

~ ,~ ,~ , ,  are determined for the as-
sumed temperature distribution (1), the principal 
stresses  *

2
*
1  ,ss  for the flat stress state should be 

defined [1,3,9] in order to find equivalent stresses 
according to the strength hypotheses accepted. 

Taking into account relationships (12), the 
principal stresses are expressed with the follow-
ing formulas known from the material strength 
for the Mohr’s circle:
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In the case when, analogously as in [4], the 
maximal pressing pressure of the plunger/sleeve, 
i.e., the longitudinal stresses  zs  (or the so-called 
axial ones), is considered during the process, we 
have a three-directional stress state (3D). Accord-
ing to what has been assumed in (7), a relation-
ship for the longitudinal principal stress  zss =*3
holds.

Knowing the principal stresses  *
3

*
2

*
1  , , sss , it 

is possible to determine equivalent stresses for the 
two hypotheses under consideration in the present 
study (see Appendix IV) (cf. [4] as well).

ANALYSIS OF THE RESULTS

To analyse in detail the stress state in the 
plunger/sleeve, a special code, whose basic as-
sumptions and formulas are presented in this 
study, has been written. This code determines 
components of the stress state, principal stresses 
and equivalent stresses for mechanical and ther-
mal loads for the two strength theories, namely: 
the Huber-Mises-Hencky hypothesis and the 
Burzynski hypothesis. 

Detailed computations have been conducted 
for the following input data referring to actual 
conditions present during the manufacturing 
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process, in a Buehler HPDC machine based in the 
WIFAMA-PREXER company, namely:
 • constant external temperature of the plunger

bT =250°C;
 • amplitude of variability in the plunger external 

temperature bT̂ =50°C
 • plunger inner temperature  

aT =150°C; 
 • plunger outer diameter D=2b=70 mm;
 • plunger inner diameter d=2a=42 mm;
 • maximal plunger pressing pressure 

pz=σz=-72 MPa;
 • ratio of various material strengths 

z=kc/kr (Rc/Rm) z=1.5.

Like in [4], it has been assumed that the 
plunger is made of one of four variants of materi-
als characterized by material constants listed in 
Table 1. In the computations, the index notations 
for the given material have been assumed as in 
Table 1. 

In the thermal problem, the stress state com-
ponents for the axially symmetrical state (A1.5) 

 jss  ,r  and for the flat stress state (A3.19) 
 jj sss rr

~ ,~ ,~  are in a direct proportion to the 
product  aE , which has been additionally listed 
in Table 1. The stress state components depend 
also on a temperature difference between the 
outer surface of the plunger/sleeve and its cooled 
inside. It should be remembered that for the flat 
stress state, according to (1) and (2), we have 

 0cos)(ˆ),(~ ==== jj arTarT .
For the 3D mechanical and thermal problem, 

constant longitudinal stresses in compression 
(the so-called axial stresses)  zss =*3  have been 
assumed.

In Fig. 2, a plot of the stresses  rs  as a func-
tion of the radius r is depicted for the 4 plunger 
material variants listed in Table 1 and for the axi-
ally symmetrical state. Maximal stress values  rs  
occur for variant 4, then for variants 3 and 1, and 
the least ones for variant 2, as can be expected 
due to the quantity  aE . Maximal stresses do 
not exceed 15 MPa. According to the boundary 
conditions, the stresses  rs  for r=a and r=b equal 

zero. In Fig. 3, alternations in the stresses  js  ver-
sus the radius r for 4 material variants have been 
presented, also for the axially symmetrical state. 
Maximal stresses in tension occur on the plunger 
inner surface (r=a) and are less than 140 MPa for 
variant 4, whereas maximal stresses in compres-
sion are on the plunger outer surface (r=b) and 
are less than 100 MPa. For r≈27 mm, the stresses 

 js  are equal to zero. A sequence of variants is the 
same as in Fig. 2.

In Figs. 4 and 5, plots of the stress compo-
nents  jj sss ˆ,ˆ,ˆ rr  as a function of the radius r 
for an arbitrary value of the angle φ are depicted 
for the flat thermal state. Stresses are determined 
for a temperature difference between the outer 
and inner surface equal to 50 0C and, therefore, 
are less than stresses for the axially symmetrical 
state. According to (A3.6), the stress components 
are equal, i.e.,  jss rr ˆˆ = . In Fig. 4, the maximal 
stress values  jss rr ˆˆ =,  jss rr ˆˆ =  are equal to approx. 5 MPa 
at most, whereas in Fig. 5 the maximal stresses 
in tension  jŝ  are equal to about 50 MPa on the 
inner surface, while the stresses in compression 
are equal to approx. 30 MPa outside the plunger. 
A sequence of alternations in the stress values is 
identical as in Figs. 2 and 3. 

In the next stage, the principal stresses 
 *

3
*
2

*
1  , , sss  and the equivalent stresses  HMHs  

(according to the HMH hypothesis) and  Bs  (ac-
cording to the Burzynski hypothesis) are deter-
mined, respectively, for the 3D stress state on 
the assumption that  zs =-72 MPa. The stresses 

 *
3

*
2

*
1  , , sss  and  HMHs ,  Bs  should be determined 

for the given value of the angle φ. The maximal 
values of these components occur for φ=0, and 
the lowest ones for φ=180o, whereas they are in-
termediate for the angle φ=90o. 

Further on, in Figs. 6–13, distributions of the 
equivalent stresses  HMHs  and  Bs  for, respective-
ly, variants 1–4 versus the radius r, are shown. It 
should be noticed that when the stresses in com-
pression  zs  are assumed, the stresses  Bs  de-
crease with respect to  HMHs  (for a more detailed 
analysis, see Appendix IV).

Table 1. Plunger material characteristics 

Variants Materials
E ν α E α Rm Rc z

GPa - 10–6 K-1 Pa/K MPa MPa -
1 CuAl10Fe5Ni5 110 0.34 16.2 1782 620 938 1.5
2 50 standard grey iron 145 0.29 10.8 1566 362 1130 1.5
3 High silicon bronze A H-01 105 0.346 18.0 1890 550 1.5
4 Ampcoloy A 89 beryllium copper 135 0.34 17.2 2322 740 1.5
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One can see in Fig. 6 that the maximal stress-
es  HMHs  are 190 MPa for r=a, and for r=b they 
are about 110 MPa at φ=0. For the angle φ=180o, 
they are equal to 120 MPa and 64 MPa, respec-
tively. For the angle φ=90o, values of stresses are 
intermediate. In Fig. 7, a change in the stresses 

 Bs  is similar, but their values become lower. 
The maximal stresses  Bs  are about 210 MPa 
for r=a, whereas for r=b they exceed 70 MPa at 
φ=0. On the outer surface, the stresses  Bs  de-
crease by approx. 30 MPa with respect to  HMHs , 
and on the inner surface they are less by approx. 
20 MPa, correspondingly. A higher reduction in 
the stresses  Bs  on the outer surface follows from 
the stresses in compression  js  and  jŝ . For the 
angles φ=0; 90o; 180o and r≈29 mm, the stresses 

 HMHs  differ inconsiderably. Similar relations 
hold for the stresses  Bs .

In Figs. 8 and 9, similar relationships occur 
between  HMHs  and  Bs  for variant 2, in Figs. 10 
and 11 for variant 3, and in Figs. 12 and 13 for 
variant 4, respectively. As expected, the maximal 
stresses  HMHs  and  Bs  occur for variant 4. For 
the angle φ=0 and r=a, we have  HMHs =231 MPa, 

 Bs =212 MPa, whereas for r=b, 111 MPa and 
74 MPa, correspondingly.

The minimal values  HMHs  and  Bs  occur for 
variant 2. In this case, we have  HMHs =174 MPa, 

 Bs =154 MPa for the angle φ=0 and r=a , where-
as for r=b, 80 MPa and 53 MPa, respectively.

The analysis conducted so far has been de-
voted to a variable temperature distribution on the 
outer plunger surface that corresponds better to 
an actual temperature distribution in the HPDC 
machine plunger. The assumed temperature dis-
tribution results in a complex stress state in the 
sleeve and the equivalent stresses defined accord-
ing to the two hypotheses taken in the study. The 
maximal equivalent stresses  HMHs  and  Bs (ac-
cording to the HMH and Burzynski hypotheses, 
correspondingly) for the inner (r=a) and outer 
(r=b) surface of the plunger, i.e., for the angle 
φ=0 according to (1), (18), (A1.5) and (A3.19) 
obtained in the study, are listed in Table 2.

The presented stresses have been compared 
to the equivalent stresses determined for the ap-
proximated axially symmetrical stress state, on 
the assumption of a constant temperature distri-
bution on the inner and outer surface, as shown in 
[4]. According to relationships (1)-(3), it has been 
assumed that 

 aTarTarT )(),( 


150°C 

 bb TTbrT ˆ),( 


300°C 
(19)

Fig. 2. Plots of the stresses  rs  as a function of the 
radius for the axially symmetrical thermal problem

Fig. 3. Plots of the stresses  js  as a function of the 
radius for the axially symmetrical thermal problem

Fig. 4. Plots of the stresses  jss rr ˆˆ =  as a func-
tion of the radius for the flat thermal problem

Fig. 5. Plots of the stresses  jŝ  as a function 
of the radius for the flat thermal problem
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In Table 2, equivalent stresses according to 
the two hypotheses under analysis for the 3D 
stress state with the thermal axially symmetrical 
state and for the axial stresses in compression  zs  
(determined according to [4]), have been given 
as well. These stresses have been referred to as, 

 HMHs!  and  Bs
!

, respectively.
As can be easily seen, the corresponding 

equivalent stresses for the simplified model [4] 
yield higher values than for the flat thermal state. 
The relevant ratios of the stresses  HMHHMH ss /!  
and  BB ss /!  do not exceed 1.12. In the authors’ 
opinion, it is a sufficient accuracy for estimation 
of a real stress state in comparison to the simpli-
fied model of the stress state assumed in [4].

CONCLUSIONS

An analysis of the stress state in HPDC ma-
chine plunger subjected to static mechanical 
loads and stationary thermal loads is presented. 
A variable temperature distribution on the outer 
surface of the plunger and a constant temperature 
inside the plunger due to forced cooling of its sur-
face have been assumed. Four plunger material 
variants have been analysed. Components of the 

stress state, and then principal stresses in plung-
ers have been determined, which has permitted 
equivalent stresses to be defined according to two 
strength hypotheses, including one accounting for 
various tensile and compression strengths of the 
plunger materials. It allows the equivalent stress-
es to be determined more adequately, which in 
turn can make a choice of the die casting plunger 
material more reasonable, by recognizing the op-
erating conditions and providing thus higher wear 
and reliability of the plunger.

Appendix I

For the assumed axially symmetrical state of 
the thick-walled sleeve, the following formulas 
derived in [4] hold. For clarity, only four basic 
formulas are given in this Appendix, namely:
 • equation of the heat conductivity in the sta-

tionary problem according to (1):

0)(12 =
∂
∂

∂
∂

=∇
r
Tr

rr
T (A1.1)

 • equation of equilibrium according to (12):

0



rdr

d rr 
 (A1.2)

Fig. 9. Distribution of the equiva-
lent stresses  Bs  for material 2

Fig. 6. Distribution of the equiva-
lent stresses  HMHs  for material 1

Fig. 7. Distribution of the equiva-
lent stresses  Bs  for material 1

Fig. 8. Distribution of the equiva-
lent stresses  HMHs  for material 2
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 • geometrical equations according to (13):

dr
ud

r  ,  
r
u

  (A1.3)

where: u  – radial displacement,
  re  – radial strain,
  je  – circumferential strains,
  rs  – radial stresses
  js  – circumferential stresses,
 aTarT == )(  – temperature on the cyl-

inder inner surface,
 bTbrT == )(  – temperature on the cylin-

der outer surface, and, moreover,
 ab TT >  and aTTT −=∆ .

A solution to (A1.1) for the sleeve is [4]:

ab
arTTTrT aba /ln

/ln)()(   (A1.4)

Stress state components for the axially sym-
metrical state with boundary conditions (15) are 
expressed with the relationships [4]:

  

 

ú
û

ù
ê
ë

é
-
-

-
-

-=
)1/(
)1/(

)/ln(
)/ln(

2
)(

22

22

ab
rb

ab
rbTTE ba

r
as

ú
û

ù
ê
ë

é
-
+

+
--

-=
)1/(
)1/(

)/ln(
1)/ln(

2
)(

22

22

ab
rb

ab
rbTTE ba

t
as

(A1.5)

Appendix II

The equation of heat conductivity in the flat 
stationary problem according to (1) is as follows:

 0
~1~1~
2

2

22

2

=
¶
¶

+
¶
¶

+
¶
¶

j
T

rr
T

rr
T (A2.1)

with the boundary conditions 

0),(~  arT  and bTbrT ˆ),(~    (A2.2)

In the light of the above-mentioned, accord-
ing to (2) and (8), a relationship

TTTT a
~~~~ =−=∆ (A2.3)

holds.

Table 2. Equivalent stresses for the inner and outer side of the plunger

Equivalent stresses Radius r
Variant1 Variant 2 Variant 3 Variant 4

MPa
 HMHs r=a 190 174 198 231

 HMHs r=b 87 80 92 111

 Bs r=a 170 154 178 212

 Bs r=b 58 53 61 74

 HMHs!   [4] r=a 201 184 210 247

 HMHs!   [4] r=b 97 87 103 125

 Bs
!

  [4] r=a 182 164 191 227

 Bs
!

  [4] r=b 65 58 68 83

Fig. 10. Distribution of the equiva-
lent stresses  HMHs  for material 3

Fig. 11. Distribution of the equiva-
lent stresses  Bs  for material 3
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With respect to the temperature distribution 
assumed in (1): 

 jcos)(ˆ~ rTT = (A2.4)
a solution to (A2.1) is sought with the vari-

able separation method in the form: 

 )()(ˆ~ jqrTT = (A2.5)

After differentiation and substitution of 
(A2.5) into (A2.1), we get:

 222

2

2

2

ˆ

ˆ1ˆ

kr
T

r
T

rr
T

r -=¶
¶

+
¶
¶

-=¶
¶

q

q
(A2.6)

It follows from the first part of the equation that

 02
2

2

=+
¶
¶ qq k
r

(A2.7)

whose solution is a series of eigenvalues. Howev-
er, in the light of (A2.4), i.e., for k=1, we obtain: 

 jq cos= (A2.8)
After substitution of (A2.4) into (A2.1), a ho-

mogenous differential equation is attained:

0ˆˆˆ
2

2
2 =−

∂
∂

+
∂
∂ T

r
Tr

r
Tr (A2.9)

which is an Euler differential equation. For 
this type of equation, we seek a solution in the 
form  brT =ˆ . Taking into account the above so-
lution, for the case when k=1, it has the following 
form: 

)(
ˆˆ

2

22 r
ar

ab
bTT b −
−

= (A2.10)

Taking account of (A2.5), (A2.8) and (A2.10) 
in (A2.4), the final solution is as follows:

 jcos)(
ˆ~ 2

22 r
ar

ab
bTT b -
-

= (A2.11)

Appendix III

With respect to the assumed temperature dis-
tribution (A2.4), components of the stress state, 
according to (12), are as follows:

  
         (A3.1)  

 
 

jsjs cos)(ˆ),(~ rr rr =
jsjs jj sin)(ˆ),(~ rr rr =

jsjs jj cos)(ˆ),(~ rr =
(A3.1)

The equations of equilibrium for the assumed 
flat stress state, corresponding to the stationary 
temperature distribution assumed in Appendix II 
(A2.11), according to (5) and (12) and boundary 
conditions (17), take the form: 

 

0ˆ2ˆ1ˆ

0
ˆˆ

ˆ1ˆ

,,

,,

=++

=
-

++

jjjj

j
jj

sss

ss
ss

rrr

r
rrr

rr

rr (A3.2)

where the stress state components, accord-
ing to (10), (12) and (13), are expressed with the 
relationships:

 

      (A3.3) 
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1
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E
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1
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vE
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)1(2

ˆ ,, jj n
s

(A3.3)

Substituting (A3.1) into (A3.2), we get:

 
( )

0ˆ1ˆ2ˆ

0ˆ1ˆˆ1ˆ

,

,

=-+

=-++

jjj

jj

sss

ssss

rr

rr

rrr

rrrr

(A3.4)

Fig. 13. Distribution of the equivalent 
stresses  Bs  for material 4

Fig. 12. Distribution of the equivalent 
stresses  HMHs  for material 4
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Having summing up the sides, we have:

 jj ssss rrrrrr rr
ˆ1ˆˆ1ˆ ,, +=+ (A3.5)

The above relation can be expressed also as: 

 )ˆ()ˆ( jss rr r
dr
dr

dr
d

= (A3.5a)

Hence, it results that 

 jss rr ˆˆ = (A3.6)
The above reasoning leads to the statement 

that system of two equations (A3.1) is a linearly 
dependent system due to the fact that radial and 
tangential stresses are equal.

Returning to equations (A3.1), it can be said 
that the system of two equations has three un-
known component functions of the stress state 

 jj sss ˆ,ˆ,ˆ rr . With respect to (A3.3) and according 
to (13), the displacements have been assumed as: 

 
 
jj cos)(ˆ),(~ ruru =
jj sin)(ˆ),(~ rvrv =

(A3.7)

To solve explicitly these equations, the 
stresses have been expressed with the displace-
ment components vu ˆ,ˆ  (13). After substitution of 
(A3.7) into (A3.2), we get: 

 

    (A3.8) 
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where the following notations 

ruu ,ˆˆ =• , rvv ,̂ˆ =• are introduced.
(A3.9)

Substituting (A3.8) into (A3.2), we obtain a 
system of equilibrium equations in displacements:
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System of equations (A3.10) can be reduced 
to a system of first-order differential equations:
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Next, a system of homogeneous equations 
(A3.11): 
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(A3.12)

is to be solved.
We expect a solution to homogenous differen-

tial Euler equations (A3.12) as: 
rkru 1)(ˆ   
rkrv 2)(ˆ    
rkry 3)(ˆ   
rkrz 4)(ˆ   

 
 

(A3.13)

After substitution of (A3.13) into (A3.12) and 
simplification of the equations with respect to γr
, the characteristic equation (zeroing condition of 
the determinant) has the following roots:
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(A3.14)

Taking the above-mentioned into consider-
ation, a general solution to the system of equa-
tions (A3.12) has the form:
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Next, a particular solution to non-homoge-
nous equation (A3.11) is sought with the method 
of variation of parameters:
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The second term in the square bracket at B(r) 
that occurs in the first two equations (A3.16) re-
sults from the singularity of the solution to the 
system of Euler equations (A3.11).

Substituting variated parameters (A3.16) into 
system (A3.11), we obtain a system of four equa-
tions with respect to the constants A(r), B(r), C(r) 
and D(r). After solving this system and integrat-
ing the expressions for derivatives of variated 
constants, the relationships for the constants A, 
B, C and D are attained:
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where: A1, B1, C1 and D1 – integration con-
stants, which are to be determined from 
the boundary conditions. When the stress 
state components  jj sss ˆ,ˆ,ˆ rr  are deter-
mined on the basis of displacement com-
ponents (A3.15) and (A3.16), the integra-
tion constant A1 is reduced, i.e., it can be 
assumed that A1=0. Thus, only three in-
tegration constants B1, C1 and D1 should 
be determined with respect to the four 
boundary conditions assumed (17). Ac-
cording to (A3.6), boundary conditions 
(17) have been modified:
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(A3.18)

which allows one to define explicitly the inte-
gration constants. When they are determined, the 

stress state components can be finally written as 
follows:
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Appendix IV

In [4], formulas for determination of equiva-
lent stresses according to 4 strength hypotheses 
in a thick-walled sleeve were given for princi-
pal stresses. Below, following [4], the formulas 
in which notations used in this work occur are 
presented. 

Having the principal stresses  *
3

*
2

*
1  , , sss  

determined, it is also possible to define equiva-
lent stresses for two strength hypotheses, i.e., 
the Huber-Mises-Hencky hypothesis (HMH) 
[1,3,9] and the Burzynski theories [9], because 
the plunger material can have various maximal 
allowable stresses in tension kr and maximal al-
lowable stresses in compression kc (or the ten-
sile strength Rm and the compression strength Rc, 
correspondingly). 

For isotropic materials, equivalent stresses 
are determined according to: 
 • Huber-Mises-Hencky hypothesis (denoted as 

HMH) [1,3,9]

 ( ) ( ) ( ) ( )[ ] rHMHeqvHMH k£-+-+-==
2*

1
*
3

2*
3

*
2
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2

*
12

1 ssssssss

 ( ) ( ) ( ) ( )[ ] rHMHeqvHMH k£-+-+-==
2*

1
*
3

2*
3

*
2

2*
2

*
12

1 ssssssss
(A4.1)

 • Burzynski hypothesis (denoted as B) [9]

First, two auxiliary quantities should be found:

 3/)( *
3

*
2

*
11 sssw ++= (A4.2)

 ( ) ( ) ( ) 3/2*1
*
3

2*
3

*
2

2*
2

*
12 ssssssw -+-+-= (A4.3)

They allow for determination of equivalent 
stresses according to the presented hypothesis for 
three ranges, namely:

 ο when  0/2 12 ££- ww , then 
 ( ) rBeqvB kz <== )2/(3 2wss

(A4.4)
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 ο when  2/ 12 -<ww  or  12 /2 ww< , then 

 ( ) rBeqvB kzzzz <-++== )2/()1(3)22/()1(3 12 wwss
 ( ) rBeqvB kzzzz <-++== )2/()1(3)22/()1(3 12 wwss
(A4.5)

 ο when  2/0 12 ££ ww , then 
 ( ) rBeqvB kzzz <-+== /)1(3)2/(3 12 wwss (A4.6)

where:  )/(/ rcmc kkRRz == (A4.7)

In the case when 1=z , the Burzynski hy-
pothesis is reduced to the HMH hypothesis.

The determination of mechanical and thermal 
stress components and equivalent stresses en-
ables a parametric analysis and facilitates a pos-
sible evaluation of tribological properties of the 
HPDC machine sleeve.
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