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INTRODUCTION

There are two important properties that de-
fine a plate structure; first by considering the 
geometrical configuration, a plate structural is a 
three dimensional solid with a very small thick-
ness compared to other two planar dimensions. 
Secondly, the forces applied on a plate are per-
pendicular to the plane of the plate. Therefore, a 
plate resists the applied load by means of bend-
ing in two directions and twisting moment. By 
considering the structural plate characteristics, a 
plate theory was used to transform a 3D problem 
into 2D. The plate theory has the specific aim of 
calculating the deformation and stresses in a plate 
when subjected to loads [1]. 

Due to the practical importance of plate struc-
tures, engineers have long been faced with the 
task of analyzing plates of various geometry and 

loading. Unfortunately, the governing differential 
equations are solvable only for simple geometry 
and boundary conditions [2]. During the last ten 
years, much progress has been made in the devel-
opment of structural methods of analysis based on 
matrix algebra and a discretization of the structure 
into an assembly of discrete structural elements. 
In these methods, a displacement or a stress distri-
bution is assumed within the element and a com-
plete solution is then obtained by combining this 
approximate displacement or stress distributions 
in a manner which satisfies the force-equilibrium 
and displacement-compatibility requirements at 
all interfaces of the elements [2]. The methods 
based on such approaches have been proven to 
be suitable for the analysis of complex structures. 
This gave rise to the development of the finite ele-
ment methods. 
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These methods have been proven successful 
and used in analysis of many complex civil en-
gineering planar structures like thick plates and 
slabs and other non-planar forms [3]. However, 
through finite element method, internal forces 
and moments are determined and afterwards the 
design is done by referring to design codes.

Finite element analysis has been used by en-
gineers since 1960s [4] and the theory behind 
such method has been well-explored by numer-
ous researchers. As the time goes on, the human 
has started to build complex structures geomet-
rically and in load distribution. The analysis of 
such structures by using classical methods had 
become very difficult and time consuming when 
considered time constraints and FE has seemed to 
be the answer for designing complex structures 
within short time [5].

Despite numerous studies associated with fi-
nite element based flat plate analysis, the finite 
element method is not without limitations. While 
finite element is very effective in handling com-
plexities that restrict simplified design methods, 
finite elements exhibit several important practi-
cal constraints. First of all, there is a difficulty in 
the interpretation of the results of finite element 
analysis are and unsuitability in their direct use. 
In order to interpret the results, understanding of 
several sign conventions and coordinate system 
is necessary. 

It is very common for a structural model to 
contain millions finite elements and hundred or 
more loading cases. 

The geometrical irregularity and complexity 
of boundary conditions of plates makes the anal-
ysis, results interpretation and reduction of that 
complexity to a simple design difficult for an en-
gineer. This is due to the fact that in finite element 
analysis, each element contains more nodes and, 
in their turn, those nodes contain more degree 
of freedom which results in voluminous results 
in this analysis. Today’s practice is based on the 
determination of design forces along a cross sec-
tion on an element by element basis, usually node 
by node per element. All loading conditions must 
be checked to determine the maximum effect and 
reduced to a design envelope. There is a high pos-
sibility of errors on the part of the engineer when 
this method is used.

The limitations associated by the use of finite 
element method was described by Hrabok and 
Hrudey and Alison E. Hatheway [22. 23] where 
they mentioned that the choice of elements for 

analysis including various shapes, configurations 
of nodal and nodal degree of freedom were the 
most important. The lack of sufficient training in 
this method complicates this matter even further.

The modeling and analysis of plates in bend-
ing using the classical approach is certainly true 
for the plates loaded uniformly and with regu-
lar geometry. If the plate has highly irregular 
geometry and contains holes or is subjected to 
concentrated or otherwise irregular loadings, the 
analysis is further complicated and the classical 
approaches are not valid. Thus, the Finite Ele-
ment Method were proven to be the most power-
ful numerical techniques ever devised for solving 
differential (and integral) equations of initial and 
boundary-value problems geometrically compli-
cated regions” [6].

The objective of this research was to empha-
sise the use of finite element methods of analysis 
for the plate structures in bending by comparing 
it with classical analysis approaches. Specifically, 
this paper assessed the percentage of conver-
gence errors of finite element method to classical 
method of analysis for flat plates in bending, and 
the restrictions of classical analysis approach was 
highlighted to recommend the use of finite ele-
ment method in the design of flat plate in bending.

The scope of this study was limited to the 
comparison of two methods of analysis; classical 
method and Finite Element method for plates in 
bending. Two square plates were used as example 
one simply supported from all sides and the other 
clamped from all sides with uniform loading, the 
classical approach was performed first and the 
modeling with LISA software that uses Finite 
Element analysis method was also performed. 
The convergence of the results from LISA was 
checked compared to the classical approach re-
sults to draw a conclusion and Recommendations.

TRADITIONAL ANALYSIS 
METHODS FOR FLAT PLATES

Plate theory

By this theory, three assumptions are used to 
reduce the equations of 3D theory of elasticity 
to 2D. First, the line normal to the neutral axis 
before bending remains straight after bending, 
second, the normal stress in thickness direction 
is neglected, i.e. this assumption converts the 
3D problem into a 2D problem. σz = 0 and third, 
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the transverse shearing strains are assumed to be 
zero. i.e., shear strains γxz and γyz will be zero. 
Thus, the thickness of the plate remains constant 
during bending. 

Moment equations of the bending plate

By considering a plate element of 𝑑𝑥×𝑑𝑦 and 
with thickness t, the plate is subjected to exter-
nal uniformly distributed load P. For a thin plate, 
body force of the plate can be converted to an 
equivalent load and therefore, consideration of 
separate body force is not necessary.

From the relation above, it can be observed 
that stresses vary linearly along thickness of the 
plate (Fig. 2). Hence the moments (Fig. 3) on the 
cross section can be calculated by integration. 

𝑀𝑀 = [
𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀
] = ∫ 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎

𝑡𝑡
2

𝑡𝑡
2

= 

=  (∫ 𝑧𝑧2𝑑𝑑𝑑𝑑
𝑡𝑡
2

𝑡𝑡
2

) [𝐷𝐷]𝛥𝛥2𝑊𝑊 = − 𝑡𝑡3

12 [𝐷𝐷]𝛥𝛥𝛥𝛥  

𝑀𝑀𝑥𝑥 = 𝐸𝐸𝑡𝑡3

12(1 − 𝑣𝑣2) (𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝑣𝑣 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2 ) = 

=  𝐷𝐷𝑝𝑝(𝜒𝜒𝑥𝑥 + 𝑣𝑣𝜒𝜒𝑦𝑦) 

𝑀𝑀𝑦𝑦 = 𝐸𝐸𝑡𝑡3

12(1 − 𝑣𝑣2) (𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝑣𝑣 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2 ) = 

=  𝐷𝐷𝑝𝑝(𝜒𝜒𝑦𝑦 + 𝑣𝑣𝜒𝜒𝑥𝑥) 

𝑀𝑀𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑦𝑦𝑦𝑦
𝐸𝐸𝑡𝑡3

12(1 − 𝑣𝑣2) (𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕) = 

=  𝐷𝐷𝑝𝑝 (1 − 𝑣𝑣
2 ) 𝜒𝜒𝑥𝑥𝑥𝑥 

 

(2.1)

where	 Dp is flexural rigidity of the plate and is 
given by

𝐷𝐷𝐷𝐷 = 𝐸𝐸𝑡𝑡3
12(1 − 𝑣𝑣2) 

SOLUTION BY FOURIER SERIES 
OF PLATES

Fourier series theory

The Fourier series help determining the value 
of transversal deflection at the middle plane of the 
plate (w) which once determined the bending mo-
ment Mx, My and twisting moment Mxy can be 
calculated using Equation (2.10) 

In general each edge may be simply sup-
ported (S), clamped (C) or free (F), so there are 
21 different possible combinations of boundary 
conditions, which are listed in Table 1, where 
the Reddy notation of the boundary condition is 
adopted and the consecutive pair of letters in-
dicates a boundary condition on opposite edges 
([7], p. 266). Note that the cases below the di-
agonal in Table 1 are obtained by rotating a plate 
by 90°. For solving the problem, different authors 
introduced the simplistic method, which reduces 
a two-dimensional plate problem to an Eigen-
value problem. According to the historical notes 
of Love [8], Timoshenko et al. [9] and Melelsh-
ko [10], the first SSSS plate problem was solved 
by Navier (1823) by using a double trigonometric 
series. Later, Lévy (1899) provided a single trigo-
nometric series solution of a plate which has two 
opposite edges simply supported, The FFFF plate 
was solved by Galerkin (1915) as a limit case of a 
plate with elasticity supported edges [9]. A recent 
solution using the simplistic method was given 
by Lim et al. [11] using the Fourier method [12] 
where a set of references is provided for the val-
ues of deflection and moments in selected refer-
enced points of the plate. 

General considerations 

Consider a homogeneous isotropic elas-
tic rectangular thin plate of sides a′ =2a and 

Table 1. Possible combination of boundary conditions. Bold indicates the cases discussed by Timoshenko 
et al. [9]

SS SSSS SSSC SSSF SSCC SSCF SSFF

SC SCSC SCSF SCCC SCCF SCFF

SF SFSF SFCC SFCF SFFF

CC CCCC CCCF CCFF

CF CFCF CFFF

FF FFFF
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b′ =2b subject to a uniformly distributed load q. 
The Cartesian coordinate system Oxy is origi-
nated at the center of the plate and the plate is 
orientated in the way that it occupies the region 
−a≤ x≤ a, –b ≤ y≤ b. The governing equation of 
the plate ( [9] , p. 82) is 

𝛥𝛥𝛥𝛥 = 𝑞𝑞/𝐷𝐷 (2.2)

The equation (2.12) should be solved in such 
a way that the boundary conditions at the edge of 
the plate are satisfied, for a symmetrical bound-
ary condition the solution of governing equation 
(2.12) should be symmetrical in x and y. The sym-
metrical solution of equation (2.12) obtained by 
the Fourier method of separation of variables [13] 
may be written in the form.

𝑤𝑤 = 𝑤𝑤𝑜𝑜 +
𝑞𝑞
𝐷𝐷∑(−1)𝑛𝑛

∞

𝑛𝑛=0
(𝐴𝐴𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛼𝛼𝑛𝑛 𝑦𝑦
𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛼𝛼𝑛𝑛 𝑏𝑏

+ 𝐵𝐵𝑛𝑛
𝑦𝑦
𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝑛𝑛 𝑦𝑦
𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛼𝛼𝑛𝑛 𝑏𝑏

) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛼𝛼𝑛𝑛

+ 𝑞𝑞
𝐷𝐷∑(−1)𝑛𝑛

∞

𝑛𝑛=0
(𝐶𝐶𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛽𝛽𝑛𝑛 𝑥𝑥
𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛽𝛽𝑛𝑛 𝑎𝑎

+ 𝐷𝐷𝑛𝑛
𝑥𝑥
𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛽𝛽𝑛𝑛 𝑦𝑦
𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛽𝛽𝑛𝑛 𝑎𝑎

) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛽𝛽𝑛𝑛 𝑦𝑦 
(2.3)

where	 w0 is a particular solution satisfying
	 ΔW = q/D and where

	
𝛼𝛼𝑛𝑛 = (2𝑛𝑛+1

2𝑎𝑎 ) 𝜋𝜋 , 𝛽𝛽𝑛𝑛 = (2𝑛𝑛+1
2𝑏𝑏 ) 𝜋𝜋 𝑛𝑛 = 1,2,3, . . .. 

 

	
𝛼𝛼𝑛𝑛 = (2𝑛𝑛+1

2𝑎𝑎 ) 𝜋𝜋 , 𝛽𝛽𝑛𝑛 = (2𝑛𝑛+1
2𝑏𝑏 ) 𝜋𝜋 𝑛𝑛 = 1,2,3, . . .. 

 
The particular solution w0 is taken in the form 

of a symmetrical polynomial of the fourth order 
in x and y 

𝑤𝑤0=co + c1x2 + c2 y2+ c3 x4 + c4x2y2 + c5y4 (2.4)

This solution must satisfy the plate equation, 
so

3c3 +c4 + 3c5 = 𝑞𝑞
8𝐷𝐷 

 The simplified equations were established ac-
cording to the ratio between two sides of a plate 
due to their boundary conditions. 

Simply supported square plate 
Case 1: Displacement 

𝑤𝑤 = 𝛼𝛼𝛼𝛼 × 𝑞𝑞 × 𝑎𝑎4
𝐷𝐷  (2.5)

Where	 αs represent the numerical value coef-
ficient which include simply boundary 
condition problem

	 q represent uniformly distributed load 
	 D represent the flexural rigidity of the 

plate,

	
𝐷𝐷 = 𝐸𝐸𝑡𝑡3

12(1 − 𝑣𝑣2) 

	 a/b=1, αs = 0.00406235

Case 2: Bending moment 
𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 = 𝛽𝛽𝛽𝛽 × 𝑞𝑞 × 𝑎𝑎2 (2.6)

Where	 βs represent the numerical value coeffi-
cient which include simple boundary con-
dition problem

	 q represent uniformly distributed load 
	 a/b=1, βs = 0.0478864 

Fixed supported square plate 
 Case 1: Displacement 
The case of fixed supported square plate is 

considered and the only change is the coefficient 
(αf) that includes the fixed boundary condition.

𝑤𝑤 = 𝛼𝛼𝛼𝛼 × 𝑞𝑞 × 𝑎𝑎4
𝐷𝐷  (2.7)

Where	 αf represent the numerical value coeffi-
cient which include fixed boundary con-
dition problem

	 a/b=1, αf = 0.00126532  

Case 2: Bending moment 
The only change is numerical value coeffi-

cient (βf) which include fixed boundary condition 
problem

a/b=1, 𝛽𝛽𝛽𝛽 = 0.0229051  
𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 = 𝛽𝛽𝛽𝛽 × 𝑞𝑞 × 𝑎𝑎2 (2.8)

FINITE ELEMENT METHOD

The finite element method is an approxima-
tion in which a continuum is replaced by a num-
ber of discreet elements [14]. Each component 
representing the system as a whole is known as 
a finite element. Parameters and analytical func-
tions describe the behavior of each element and 
then are used to generate a set of algebraic equa-
tions describing the displacements at each node, 
which can then be solved. The elements have a 
finite size and therefore the solution to these 
equations is approximate; the smaller the ele-
ment, the closer the approximation is to the true 
solution [15]. 

The finite element method can be consid-
ered a convenient instrument for the resolution 
of the problems which are governed by a system 
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of partial differential equations. In the problems 
of linear elasticity of the mechanics of solids and 
structures, the most common formulation em-
ployed consists in expressing the equilibrium dif-
ferential equation in terms of displacement as the 
only independent field variable. The correspond-
ing displacement formulation in the finite element 
method is based on the variation equation given 
by the minimum Total Potential Energy (TPE).

A brief summary of the linear elastic govern-
ing equations where the Finite Element equations 
are derived are described below by considering 
a body that occupies the region B  in Cartesian 
coordinate x ,y ,z. B is formed of BU BBU   i.e. 
set of points within the domain of B and boundary 
of B, B  .

[𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢]=[
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦]  

 uu   In B      Compatibility 
 

[
𝜀𝜀𝜀𝜀
𝜀𝜀𝜀𝜀
𝛾𝛾𝛾𝛾𝛾𝛾

] = −𝑧𝑧 [
𝜕𝜕^2/𝜕𝜕^2𝑥𝑥
𝜕𝜕^2/𝜕𝜕^2𝑦𝑦
𝜕𝜕^2/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

]𝑤𝑤    Hooke’s law 

 𝜀𝜀 = 𝐷𝐷. 𝑢𝑢 In B 
 

 [𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕/𝜕𝜕𝜕𝜕 0
0 𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕/𝜕𝜕𝜕𝜕] [

𝜎𝜎𝜎𝜎
𝜆𝜆𝜆𝜆𝜆𝜆
𝜎𝜎𝜎𝜎

]=[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]  Equilibrium 

 pxy
D .  In B 

 

Total potential energy

These variational methods form the basis for 
the derivation which includes all the equations 
for the linear theory of elasticity. The principle 
of minimum total potential energy is a result of 
the work of a Chinese scholar Hu and a Japanese 
scholar, K.Washizu [17] known as Hu-Washizu 
varitional theorem which is expressed as,

∏(𝑢𝑢, 𝜎𝜎, 𝜀𝜀) = 1
2∫ 𝜀𝜀𝑇𝑇
𝐵𝐵

𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑 − ∫𝜀𝜀𝑇𝑇𝐻𝐻𝐻𝐻
𝐵𝐵

𝑑𝑑𝑑𝑑 + ∫𝜎𝜎𝑇𝑇
𝐵𝐵

(𝐷𝐷𝑢𝑢 − 𝜀𝜀)𝑑𝑑𝑑𝑑 − ∫𝑢𝑢
𝐵𝐵

𝑝𝑝𝑑𝑑𝑑𝑑 − ∫𝑢𝑢𝑇𝑇
𝐵𝐵

𝑡𝑡𝑑𝑑 − ∫(𝑢𝑢 − 𝑢𝑢)𝑇𝑇

𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑡𝑡𝑆𝑆 

∏(𝑢𝑢, 𝜎𝜎, 𝜀𝜀) = 1
2∫ 𝜀𝜀𝑇𝑇
𝐵𝐵

𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑 − ∫𝜀𝜀𝑇𝑇𝐻𝐻𝐻𝐻
𝐵𝐵

𝑑𝑑𝑑𝑑 + ∫𝜎𝜎𝑇𝑇
𝐵𝐵

(𝐷𝐷𝑢𝑢 − 𝜀𝜀)𝑑𝑑𝑑𝑑 − ∫𝑢𝑢
𝐵𝐵

𝑝𝑝𝑑𝑑𝑑𝑑 − ∫𝑢𝑢𝑇𝑇
𝐵𝐵

𝑡𝑡𝑑𝑑 − ∫(𝑢𝑢 − 𝑢𝑢)𝑇𝑇

𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑡𝑡𝑆𝑆 

∏(𝑢𝑢, 𝜎𝜎, 𝜀𝜀) = 1
2∫ 𝜀𝜀𝑇𝑇
𝐵𝐵

𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑 − ∫𝜀𝜀𝑇𝑇𝐻𝐻𝐻𝐻
𝐵𝐵

𝑑𝑑𝑑𝑑 + ∫𝜎𝜎𝑇𝑇
𝐵𝐵

(𝐷𝐷𝑢𝑢 − 𝜀𝜀)𝑑𝑑𝑑𝑑 − ∫𝑢𝑢
𝐵𝐵

𝑝𝑝𝑑𝑑𝑑𝑑 − ∫𝑢𝑢𝑇𝑇
𝐵𝐵

𝑡𝑡𝑑𝑑 − ∫(𝑢𝑢 − 𝑢𝑢)𝑇𝑇

𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑡𝑡𝑆𝑆 

(3.1)

A variation theorem is stationary when the ar-
gument u ,σ ,ε  satisfies the condition where the 
first variation disappear /vanishes.

From the equation above we can form a ba-
sis of various variational formulations such as the 

Hellinger-Reissner variational theorem, which is 
basically a two field formulation in u displacement 
and σ stress as well as the minimum Potential 
Energy, which is a displacement based variation 
theorem. The latter will constitute the point de-
parture for the displacement based finite element.

Taking equation (11) assume that the compat-
ibility condition in B and on B∂ and Hooke’s law 
are satisfied a priori i.e.

𝜎𝜎 = 𝐻𝐻. (𝜀𝜀 − 𝜀𝜀)  In Bs 
𝜀𝜀 = 𝐷𝐷. 𝑢𝑢   In B 
𝑢𝑢 = 𝑢𝑢    On B  

 
Thus, the function becomes;

∏(𝑢𝑢) = 1
2 ∫(𝐷𝐷𝑢𝑢)𝑇𝑇𝐻𝐻(𝐷𝐷𝑢𝑢)𝑑𝑑𝑑𝑑 − ∫(𝐷𝐷𝑢𝑢)𝑇𝑇

𝐵𝐵𝐵𝐵
𝐻𝐻𝜀𝜀𝑑̅𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇

𝐵𝐵
𝑝𝑝𝑑𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇 

𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑑𝑑𝑆𝑆 

∏(𝑢𝑢) = 1
2 ∫(𝐷𝐷𝑢𝑢)𝑇𝑇𝐻𝐻(𝐷𝐷𝑢𝑢)𝑑𝑑𝑑𝑑 − ∫(𝐷𝐷𝑢𝑢)𝑇𝑇

𝐵𝐵𝐵𝐵
𝐻𝐻𝜀𝜀𝑑̅𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇

𝐵𝐵
𝑝𝑝𝑑𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇 

𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑑𝑑𝑆𝑆 

(3.2)

This constitutes the principal of minimum po-
tential energy and is often used as the basis for de-
veloping the displacement finite element method.

Element stiffness equations

In order to obtain the finite element stiffness 
equation, the variational of TPE functional is 
decomposed into contributions from individual 
elements:
Thus 

∏(𝑢𝑢) = ∑ {1
2 ∫(𝐷𝐷𝐷𝐷)𝑇𝑇𝐻𝐻(𝐷𝐷𝐷𝐷)𝑑𝑑𝑑𝑑 − ∫(𝐷𝐷𝐷𝐷)𝑇𝑇

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − ∫ 𝑢𝑢𝑇𝑇

𝐵𝐵𝐵𝐵
𝑝𝑝𝑑𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑑𝑑𝑑𝑑}

𝑚𝑚

1
 

∏(𝑢𝑢) = ∑ {1
2 ∫(𝐷𝐷𝐷𝐷)𝑇𝑇𝐻𝐻(𝐷𝐷𝐷𝐷)𝑑𝑑𝑑𝑑 − ∫(𝐷𝐷𝐷𝐷)𝑇𝑇

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − ∫ 𝑢𝑢𝑇𝑇

𝐵𝐵𝐵𝐵
𝑝𝑝𝑑𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑇𝑇 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑡𝑡𝑑𝑑𝑑𝑑}

𝑚𝑚

1
 

(3.3)

Then, the finite element approximation for 
displacement is given by;

qN
ii

u   (3.4)

Where	𝑁𝑁 = 𝑁𝑁𝐵𝐵 
	 BN  Is the shape function for plate in 

bending
	 q is the free parameters of displacements 

at the nodes to be determined
From 𝑢𝑢 = 𝑁𝑁. 𝑞𝑞 
Then 𝐷𝐷. 𝑢𝑢 = 𝐷𝐷.𝑁𝑁. 𝑞𝑞 = 𝐷𝐷.𝑁𝑁. 𝑞𝑞 = 𝐵𝐵. 𝑞𝑞 
Then 𝐵𝐵 = 𝐷𝐷.𝑁𝑁  

(3.5)
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Inserting the relation above (3.5) into (3.3) 
and taking Π  for an element eΠ we have;

𝛱𝛱𝑒𝑒(𝑢𝑢) ≅ 1
2∫ 𝑞𝑞𝑇𝑇(𝐵𝐵𝑇𝑇𝐻𝐻𝐻𝐻)𝑞𝑞𝑞𝑞𝑞𝑞

𝐵𝐵𝐵𝐵
− 

−∫ 𝑞𝑞𝑇𝑇(𝐵𝐵𝐵𝐵𝜀𝜀)𝑑𝑑𝑑𝑑
𝐵𝐵𝐵𝐵

− ∫ 𝑞𝑞𝑇𝑇(𝑁𝑁𝑇𝑇𝑝𝑝)𝑑𝑑𝑑𝑑
𝐵𝐵𝐵𝐵

− ∫ 𝑞𝑞𝑇𝑇𝑁𝑁𝑡𝑡𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

𝛱𝛱𝑒𝑒(𝑞𝑞) = 1 2⁄ 𝑞𝑞𝑇𝑇𝐾𝐾𝑒𝑒𝑞𝑞 − 𝑞𝑞𝑇𝑇𝐺𝐺𝑒𝑒 − 𝑞𝑞𝑇𝑇𝐹𝐹𝑒𝑒 − 𝑞𝑞𝑇𝑇𝐹𝐹  

(3.6)

Where	 𝐾𝐾𝑒𝑒 = ∫𝐵𝐵
𝐵𝐵

.𝐻𝐻. 𝐵𝐵. 𝑑𝑑𝑉𝑉  – stiffness matrix of 
element

𝐺𝐺𝑒𝑒 = ∫𝐵𝐵
𝐵𝐵

.𝐻𝐻. 𝜀𝜀. 𝑑𝑑𝑉𝑉 
 – vector of equivalent nod-

al distortions

𝐹𝐹𝑒𝑒 = ∫𝑁𝑁𝑇𝑇𝑝𝑝.
𝐵𝐵

𝑑𝑑𝑉𝑉 
 – vector equivalent nodal loads 

applied (volume)

𝐹𝐹𝑒𝑒 = ∫𝑁𝑁𝑇𝑇𝑡𝑡.
𝐵𝐵

𝑑𝑑𝑉𝑉 
 – equivalent loads on nodal 

boundary
Stationary condition of 

eΠ respect to q for 
such sub domain is 

∀𝑞𝑞, 𝜕𝜕𝜕𝜕, 𝛿𝛿𝛿𝛿(𝑞𝑞) = 𝐾𝐾𝑒𝑒𝑞𝑞 − 𝐺𝐺𝑒𝑒 − 𝐹𝐹𝑒𝑒 − 𝐹𝐹𝑒𝑒 
 = 𝐾𝐾𝑒𝑒𝑞𝑞 − 𝑓𝑓 = 0 
 

Therefore, the consistent element nodal force 
vector is 

𝑓𝑓 = 𝐾𝐾𝑒𝑒𝑞𝑞 (3.7)

where	 𝑓𝑓 = 𝐺𝐺𝑒𝑒 + 𝐹𝐹𝑒𝑒 + 𝐹𝐹𝑒𝑒 

For the stiffness matrix of the element (see 
eqn. 3.6), we have

𝐾𝐾𝑒𝑒 = ∫𝐵𝐵𝑇𝑇.
𝐵𝐵

𝐻𝐻. 𝐵𝐵. 𝑑𝑑𝑉𝑉 

But 
BBB =

where	

𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐵𝐵.𝑁𝑁𝐵𝐵 and 

𝐾𝐾𝑒𝑒 = ∫𝐵𝐵𝐵𝐵𝑇𝑇.
𝐵𝐵

𝐻𝐻𝐵𝐵. 𝐵𝐵𝐵𝐵𝑑𝑑𝑉𝑉 

𝐾𝐾𝑒𝑒 = ∫𝐾𝐾𝐵𝐵
𝐵𝐵

𝑑𝑑𝑉𝑉 

 where	 BK – Stiffness matrix for plate in bending

CASE STUDY

Characteristics of the model 

A 2D steel square plate of sides 1.0 m by 
1.0 m with the thickness of 15 mm was adopted 
for this study (Table 2).

The plate is assumed to be homogeneous and 
isotropic; the loading condition is taken as uni-
formly distributed in the x and y directions, or-
thogonal to the plane of the plate as shown on the 
Figure 1.

Figure 1. Square isotropic plate with properties and loading

Table 2. Properties of the model

Properties Value

Plate dimension 1*1m

Thickness (t) 15mm

Young’s modulus (E): 205,000 N/mm2

Poisson’s ratio (v): 0.3
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Two supports conditions were considered, 
simply supported and fixed. In this project, a 3D 
static solution was used to run the analysis of the 
model as it includes the displacement and stresses 
in the middle plane of the plate.

Quadrangular 2D element with 4, 8 and 9 
nodes and triangular 2D element with 6 nodes 
were also used to mesh the model; the plate was 
analyzed using different models, each with an 
increasing number of finite elements. Some of 
these models are shown in Figures 4 and 5. The 
four meshes contained; 16 elements (4x4 mesh), 
64 elements (8x8 mesh), 144 elements (12x12 
mesh), 256 elements (16x16 mesh), and 400 ele-
ments (20 x 20 mesh), respectively. Additionally, 
a triangular 2D element with 6 nodes was used 
with 32 elements (4x8 mesh), 128 elements (16x8 
mesh), 288 elements (18x16 mesh) and 512 ele-
ments (16x32 mesh). 

Result analysis

A finite element software LISA was used in 
this paper (Figures 2 and 3).

For each element in the tables below, the 
value of error expressed in percentage was cal-
culated to show how far the approximated value 
for each element in each case is close to meet the 
classical value or exact value. The errors were 
calculated as follows.

ERROR (𝐸𝐸) = |(EXACT,VALUE − APPROXIMATE,VALUE
EXACT,VALUE

)| × 100 

ERROR (𝐸𝐸) = |(EXACT,VALUE − APPROXIMATE,VALUE
EXACT,VALUE

)| × 100 

ERROR (𝐸𝐸) = |(EXACT,VALUE − APPROXIMATE,VALUE
EXACT,VALUE

)| × 100 

(4.3)

The exact value is that from Fourier series 
method and approximate value is from finite ele-
ment method (LISA analysis results)

Simply supported square plate
Quadrangular elements
Refer to the equation 2.5, the exact value of cen-

ter displacement is 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 6.41170𝑒𝑒−5(𝑚𝑚) 
Refer to the equation 2.16, the ex-

act value of bending moment is 
NmMyMx exactexact 9.47  .

Triangular elements

Refer to the equation 2.5, the exact value of cen-
ter displacement is 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 6.41170𝑒𝑒−5(𝑚𝑚) 

Refer to the equation 2.16, the exact value of 
bending moment is 

	 NmMyMx exactexact 9.47  

Figure 3. Constraint (simple) and loading for both quadrangular and triangular elements

Figure 2. Discretization for both quadrangular and triangular elements
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Fixed supported square plate

Quadrangular elements
Refer to the equation 2.17, the exact value of 

center displacement is.
	 )(99708.1 5 meWexact

  

Refer to the equation 2.8, the exact value of 
bending moment is NmMyMx exactexact 9.22  

Triangular elements

Refer to the equation 2.7, the exact value of 
center displacement is )(99708.1 5 meWexact

−= .
Refer to the equation 2.8, the exact value of 

bending moment is NmMyMx exactexact 9.22  

CONCLUSION

Critical evaluation of the results from finite 
element method is necessary before being relied 
upon in any application or before being applied, 
because this method is based on approximation. 
For both cases, the triangular element exhibits a 
large error for the first mesh but it ends up with an 
accurate approximation as those of quadrangular 
elements, which conform to the theories that as 
the number of elements increases, the discretized 
system approaches the reality. In conclusion, the 
targeted accuracy to recommend elements and 
mesh size for use was assumed by considering the 
economical and quality factors. The maximum er-
ror of 5% error was chosen.

Figure 4. Graph of Displacement vs Number of elements for quadrangular simply supported

Figure 6. Graph of Displacement vs Number of elements for Triangular simply supported

Figure 5. Graph of Bending Moment vs number of elements for quadrangular, simply supported
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Figure 7. Graph of Bending Moment vs Number of elements for Triangular simply supported

Figure 8. Graph of Displacement vs Number of elements for quadrangular, fixed supported.

Figure 9. Graph of Bending Moment vs number of elements for quadrangular, fixed supported

Figure 10. Graph of Displacement vs Number of elements for Triangular, fixed supported
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A quadrangular element with 9 nodes exhib-
ited a good accuracy compared to the others in 
terms of displacement.

According to the results obtained, the follow-
ing recommendations regarding the objectives set 
are made. For general use, the ratios of element 
mesh size to the size of the whole square plate 
was established for each element type and sup-
port system which met a targeted error of 5%so 
that to be relied on, for any dimensions of a given 
square plate in bending with the same aspect ratio 
and targets to achieve the same error value. 

Consider a square plate with x*y dimensions 
and an element type with a*b dimensions that met 
the targeted error mentioned above, the ratio of 
mesh size of an element to the size of the whole 

plate will be 
xy
abratio     . Therefore, for a new 

square plate with w*z dimensions and with the 
same aspect ratio as the reference square plate, 
for it to meet an error of 5%, the size of an single 
element will be wz

xy
ab

   . The ratios established 
in Tables 3–6 are recommended for relevant ele-
ment type and support system. 
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