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INTRODUCTION

The mechanism of rock mass impact on the 
support of the underground excavation roadway 
has been the subject of numerous studies pre-
sented, among others in the works [4, 18, 30]. As 
a result, many models of computational loads of 
the rock mass onto the support were developed, 
adapted to the mining and geological conditions 
in the vicinity of the excavation [2, 10, 12, 21]. 
Individual models differ with their simplifying 
assumptions. 

The load of the support by the rock mass was 
assumed equal to its pressure on the support, de-
termined according to the model of pressure crea-
tion appropriate to the conditions of the excava-
tion location. In the case of excavations located 
below the critical depth [30], the deformation 
pressure models should be used to assess rock 
mass pressure. 

In the deformation pressure models, it is as-
sumed that inelastic zones arise around the excava-
tion [8]. Two cases of inelastic zones are usually 
considered. In one of them, discussed, e.g. in the 
works [5, 15, 16, 26], it is assumed that a plastic 
zone is created around the excavation, and behind 
it the rock mass retains the characteristics of a elas-
tic medium. The plastic zone causes action on the 
support of deformation pressure and static pres-
sure. In the second case presented, among others in 
work [28], a cracks zone forms around the excava-
tion, followed by a plastic and elastic zone. The 
cracks zone activates the action on the deformation 
pressure support and static pressure [6, 28].

In this work, two inelastic zones were consid-
ered: a perfect-plastic zone with residual strength, 
adjacent to the excavation and a plastic zone be-
hind it with mild decrease in strength (strain-sof-
tening zone). The weakening of strength in the 
strain-softening zone, resulting from the develop-
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ment of the rock mass’s deformation, continues 
until the rock mass reaches the residual strength. 
The reports on this model can be found, among 
others in the works [1, 3, 13, 14, 31, 32, 35]. On 
the basis of the studies [13, 31], the relationships 
showing the state of stresses, deformations and 
displacements of the rock mass with features of 
the elastic-plastic medium with strain-softening 
and relationship defining the rock mass pressure 
exerted on the support, were given. The analysis 
of these relationships for geomechanical condi-
tions characterizing the Carboniferous rock mass 
in the Lubelski Węgiel “Bogdanka” Społka Ak-
cyjna [Inc.] was carried out. The aim of the analy-
sis was to determine the influence of the strain-
softening zone on the rock mass deformation and 
pressure on the support. The results of the con-
siderations were compared with the solution in 
which the softening of the rock mass was ignored 
after reaching the peak strength and the solution 
based on the model of the elastic-plastic-brittle 
medium. 

The results of the analysis broaden the knowl-
edge about the behavior of the rock medium in 
the vicinity of the underground excavation. The 
obtained solution can be further developed in or-
der to enable its practical application, especially 
under the conditions in which the behavior of 
the rock medium in the vicinity of the excava-
tion well reflects the elastic-plastic model with 
strain-softening.

MODEL AND ASSUMPTIONS OF 
EXCAVATION AND ROCK MASS

The excavation roadway (Fig. 1), made in the 
rock mass with elastic-plastic properties with ma-
terial softening and not exposed to the direct in-
fluence of exploitation pressure, was considered. 
The following designations were adopted: a – ra-
dius of excavation contour, Rrez – radius of plas-
tic residual zone, Rp – radius of softening plastic 
zone, pa – support resistance to external forces, r 
– current radius, pz – primary pressure in the rock 
mass around the excavation. 

A strict solution to the distribution of stresses, 
strains and displacements in the rock mass around 
the heading was obtained after the simplification 
of the assumptions given below.

The rock mass has a hydrostatic state of pri-
mary stresses with a component pz. The rock mass 
is considered an isotropic and homogeneous me-

dium. Axisymmetric plane state of strain was as-
sumed, independent of the state of stress along the 
axis of the excavation. Mass forces were omitted. 
A simplified stress-strain curve course for an elas-
tic-plastic strain-softening model was taken into 
account (Fig. 2).

The rock mass behaves elastically linearly if 
it has a stress state with constituent values smaller 
than those that satisfy the strength condition. In 
the research, a linear Mohr-Coulomb failure cri-
terion [17, 22, 25] was assumed, expressed by the 
equation (positive compressive stresses):

	 0
3

0
1 cRK += σσ 	 (1)

where:	σ1 i σ3 are the main stresses, the highest 
and the lowest, respectively, acting in the 
plane of the excavation, 

	 K0=(1+sinφ0)/(1-sinφ0), 

Fig. 1. Model of excavation and zones in the rock 
mass medium

Fig. 2. Idealized course of stress-strain curve for the 
elastic-plastic model with softening
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	 Rc
0 is uniaxial compressive strength of 

rock mass, Rc
0=(2c0cosφ0)/(1-sinφ0), 

	 c0 is the cohesion of the rock mass, 
	 φ0 is the angle of internal friction of the 

rock mass.

After reaching the peak stress (Eq. 1) in the 
rock mass around the excavation, the deforma-
tion process begins, accompanied by the decreas-
ing strength of the rock medium [22, 30, 34]. The 
weakening of the rock structure strength occurs 
as a result of a decrease in cohesion [31]. It was 
assumed that the cohesion of the medium de-
creases linearly, with the increase of plastic defor-
mation, from the value of cohesion correspond-
ing to the compressive strength to the cohesion 
of the residual medium. The impact of the change 
in the angle of internal friction on the decline in 
the strength of the rock mass was neglected. The 
rock material with residual strength can continue 
to deform at a constant stress value.

The phases of deformation of the rock me-
dium illustrate successive parts of the curve in 
Figure 2. In the elastic phase (I), the graph of 
the dependence of strain on deformation is a 
straight line with an angle of inclination depend-
ing on the value of the Young’s modulus (E) of 
the rock medium. In the plastic phase with soften-
ing (II), the deformation meets the condition, (ε1

e)
r=Rp ≤  ε1 <  (ε1

p)r=Rrez, and the strength of the rock 
medium decreases to the residual value (Rc

r). In 
the phase with residual strength, ε1 ≥ (ε1

p)r=Rrez, oc-
curs. The location of the considered deformation 
phases (zones) around the excavation is marked 
in Figure 1.

The problem is considered in the polar co-
ordinate system, in which, σr, σt are respectively 
the radial and circumferential stress in the rock 
mass around the excavation, εr is the radial strain, 
εt is the circumferential strain. In the symbols of 
stresses and strains in the residual plastic zone, in 
the plastic zone with softening and in the elastic 
zone, the  “rez”, “p”, “e” superscripts were used, 
respectively.

The strength properties of the rock medium in 
the elastic phase are described in Eq. (1) which, after 
taking into account σ1=σt and σ3=σr, has the form
	 00

crt RK += σσ 	 (2)

The strength condition (2) applies to the radius 
(r) at the boundary of the elastic and plastic zone 
around the excavation. In the plastic phase with 
softening, the relationship (2) takes the form of

	 p
c

p
r

p
t RK += σσ 0 	 (3)

where Rc
p is the uniaxial compressive strength of 

the rock mass within the plastic zone with soften-
ing, which is determined by the formula:

	 ( )[ ]
pRr

e
t

p
tc

p
c MRR =−−= εε0

	 (4)

where M is the tangent of the slope of the curve 
σ-ε within the plastic zone with softening (Fig. 2).

In the residual area, the Coulomb-Mohr 
strength condition can be presented as: 

	 r
c

rez
r

rez
t RK += σσ 0

	 (5)

where Rc
r is the uniaxial compressive strenght of 

the rock medium in the residual zone.
In the plastic zone with softening and in 

the plastic residual zone, dilatancy of the rock 
medium is taken into account. The change in 
the volume of rock material in the plastic zone 
with softening is characterized by the dilatan-
cy parameter (β1), which is related to the di-
latancy angle (ψ) according to the relationship 
[29, 33]:

	
ψ
ψβ

sin1
sin1

1 −
+

= 	 (6)

For ψ=0 there is no change in volume in the 
rock medium, for ψ>0 the rock material in the 
non-elastic zone increases the volume. The angle 
of dilatancy of the rock mass (ψ) is determined 
using the results of three-axis tests [31]. On the 
basis of research [9, 14, 29, 31] and the  non-as-
sociated law of plastic flow, the relationship be-
tween radial and circumferential strain of the rock 
mass in the plastic zone with strain-softening can 
be presented as:
	 01 =∆+∆ p

t
p

r εβε 	 (7)

where ∆εr
p, ∆εt

p is the an increase in respectively 
radial and circumferential strain in the plastic 
zone with softening.

In the plastic residual zone, the relationship 
between strains is:

	 02 =∆+∆ rez
t

rez
r εβε 	 (8)

where Δεr
rez, Δεt

rez is the an increase in respective-
ly radial and circumferential strain in the residual 
zone. The dilatancy parameter in the residual 
zone (β2) is determined with the formula [31]:
	 Φ+=12β 	 (9)

where Φ takes values from the range 0.3–0.5.
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The β1 and β2 parameters influence the course 
of the curve describing deformation properties of 
the rock medium (Fig. 3).

THE INFLUENCE OF INELASTIC ZONES 
AROUND THE EXCAVATION ON THE 
STRESS-STRAIN STATE AND ROCK MASS 
PRESSURE ONTO THE SUPPORT

The considered elastic-plastic rock mass can 
be, depending on the level of effort, in the elastic 
state, plastic with strain-softening or in the resid-
ual plastic state. The location of the elastic zone 
and inelastic zones in the surroundings of the ex-
cavation is marked in Figure 1. 

The radial stress at the boundary of the elastic 
and plastic area (σRp) takes the value specified by 
the formula:

	 0

0

1
2

K
Rp cz

pR +
−

=σ  	 (10)

The value σRp means the lowest radial stress 
necessary for maintaining the rock mass in the 
elastic state. Thus, with the support load capacity 
at least equal to σRp the rock mass will remain in 
the elastic state. Otherwise, inelastic zones may 
form around the excavation.

The state of stress in the elastic area (r≥Rp, 
Fig. 1) is determined with Eqs. (11–12): 
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Elastic strain is the result of the increase in 
stress (Δσr

e, Δσt
e) as a result of the excavation:

	 z
e
r

e
r p−=∆ σσ 	 (13)

	 z
e
t

e
t p−=∆ σσ  	 (14)

Strains in the elastic area (for a plane state of 
strain) are expressed by means of the formulas [11[:

	 ( ) 2

21
r
R

p
E

p
pRz

e
r σνε −

+
−=

	
(15)

	 e
r

e
t εε −=  	 (16)

From the geometrical equation, εt
e=ue/r [33], 

it follows that the radial displacement of a rock 
mass in the elastic area (ue) is equal to

	 ( )
r

R
p

E
u p

pRz
e

21 σν
−

+
= 	 (17)

In the plastic zone with softening (Fig. 1, 
Rrez≤r<Rp), the strain can be expressed as:

	 ( ) p
rpRr

e
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p
r ε∆εε += =  	 (18)

	 ( ) p
tpRr

e
t

p
t εεε ∆+= =  	 (19)

After substituting to Eq. (18) for Δεr
p the ex-

pression resulting from Eq. (7), to Eqs. (18–19), 
respectively, the formulas (15) and (16) and geo-
metrical equations, εt

p=up/r and εr
p=dup/dr [33], 

then after the appropriate transformations, the 
equation determining the field of displacements in 
the plastic zone with softening was obtained (up):
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On the basis of the solution of Eq. (20), 
strains in the plastic zone with softening can be 
calculated as follows:
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Substituting to the equilibrium equation (23) [14]:
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Fig. 3. Relationship between the strain of rock me-
dium and dilatancy parameter
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the expression (3) (after taking into account Eqs. 
(4), (15–16) and (19)) and then, by integrating 
the transformed Eq. (23) with the boundary con-
dition, (σr

p)r=Rp=σRp, the relationship (Eq. 24) de-
scribing the value of radial stress in the plastic 
zone with softening was obtained
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where: ( )( ) EpA pRz σν −+= 1 .

In the plastic residual zone (Fig. 1, a≤r<Rrez), 
of the stress state equation can be obtained by 
solving the equation of equilibrium (23), in which 
σt is substituted for σt

rez according to it Eq. (5), and 
σr by σr

rez. The obtained solution σr
rez and σt

rez with 
the boundary condition, (σr

rez)r=a=pa, has the form:
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In the residual area, the total strains, respec-
tively radial (εr

rez) and circumferential (εt
rez) are 

the sum of the strains at the border with the plastic 
zone with softening ((εr

p)r=Rrez, (εt
p)r=Rrez) and their 

increment in the residual zone (Δεr
rez and Δεt

rez ):
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Using the formulas (8), (21–22) and geomet-
ric equations (εr
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rez=urez/r), the sys-
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	  (29)

where urez is the radial displacement of the rock mass 
in the residual area.

The solution of the equation (29), fulfilling 
the condition, (urez)r=Rrez=(up)r=Rrez, is presented by 
the formula:
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	 (30)

An important aspect of the analysis is the de-
termination of the stress value at the boundary 
of the residual plastic zone and plastic zone with 
softening (σRrez) as a function of only the geome-
chanical parameters of the rock mass. When the 
maximum (for r=Rrez) circumferential strain (εt

p) 
according to Eq. (21) exceeds the peak deforma-
tion in the rock mass at compression (εg), it goes 
into a residual state. Eq. (24) fulfilling the con-
dition, (σr

p)r=Rrez=σRrez, after replacing the quotient 
(Rrez/Rp) with the expression designated from Eq. 
(21) (after considering, r=Rrez and εt 

p=εg), can be 
presented in the form:
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The value σRrez should be interpreted as the 
minimum value of radial stress necessary to pre-
vent the rock mass from turning into a residual 
state. The radius of the plastic zone with soften-
ing (Rp) can be determined from the formula:
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	 (32)

Compound (31) was obtained on the basis of 
Eq. (4). The determination of the radius of the re-
sidual plastic zone (Rrez) involves the solution of the 
system of two equations. One of them is Eq. (32), 
and the other results from the assumption of equal-
ity of radial stresses at the border of the plastic zone 
with softening and residual ((σr

p)r=Rrez=(σr
rez)r=Rrez)).

The rock material within the residual plastic 
zone may cause an effect on the static pressure 
support (qz) with a value determined according to 
the formula:

	 ( ))aRq rezz −= γ  	 (33)

where γ is the volume weight of the rock mass.
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In the case when no residual plastic zone is 
formed in the rock mass around the excavation, 
then the rock medium in the post-elastic stage 
is considered as a plastic medium with soften-
ing. Then, the radius of the plastic zone is deter-
mined from the formula (24) (after taking, σr

p=pa 
and r=a), and the static pressure of the rock mass 
onto the support on the basis of the following 
relationship:

	 ( ))aRq pz −= γ  	 (34)

ASSESSMENT OF THE IMPACT OF THE 
ADOPTED CONCEPT OF ROCK MASS 
MODELING ON STRESSES AND STRAINS 
IN THE VICINITY OF THE EXCAVATION

The values of calculation parameters are pre-
sented in Table 1. They belong to the set of values 
describing the rock mass and mining conditions 
in the vicinity of the excavations in the Lubelski 
Węgiel „Bogdanka” S.A. mine. 

Figure 4 shows the effect of considering the 
softening of the rock mass in the post-failure 
phase on the course of stresses and the radius of 
the plastic zone around the excavation. The cir-
cumferential stresses reach the maximum value at 
the boundary of the elastic and plastic zones. The 
maximum value of circumferential stress (σt) cor-
responds to the horizontal axis radius of the plastic 
zone (Rp), which in the case of omitting the weak-

ening of the rock medium (option I) is Rp=4.74 m 
(pa=0.1 MPa), Rp=4.7 m (pa=0.224 MPa). Taking 
into account the softening of the rock medium in 
the plastic zone affects the increase of the radius 
of this zone, Rp=5.67 m (pa=0.1 MPa), which 
is an increase of approx. 20%, compared to the 
previous variant. The use of a support with load-
bearing capacity pa=0.224 MPa causes that in the 
analysis with softening the radius of the plastic 
zone is Rp=5.35 m (an increase of approx. 14%, 
compared to option I).

The more the location of the maximum cir-
cumferential stress is shifted towards the interior 
of the mass, the larger the area of the plastic zone 
(Rp) in the vicinity of the excavation and, at the 
same time, the larger area of the rock medium 
with reduced bearing capacity.

Figure 5 presents a comparison of the calcu-
lation results based on the elastic-plastic model 
with softening and according to the rock mass 
model exhibiting the features of a three-phase 
elastic-plastic-brittle medium. The relationship 
between stress and strain for the tested three-
phase medium is illustrated in Figure 6.

The condition of the Coulomb-Mohr limit 
state for a three-phase center model at the bound-
ary of the elastic and plastic zone is defined by 
means of formula (2). The analysis assumes that 
in the plastic phase the compressive strength of 
the rock mass decreases to the value of Rc=0.5Rc

0. 
This is reflected in the condition of the limit state 
for this phase:

Table 1. Values of calculation parameters

Parameter Symbol Unit Value Source

Rock mass

Poisson’s ratio ν - 0.215 [23] 
Rock mass rating RMR - 43 [23] 

Elasticity coefficient E GPa 6.683 40
10

10
−

=
RMR

E   [27] 

Angle of internal friction φ0 deg 36 [7] 
Uniaxial compressive strength Rc

0 MPa 16.33 [7] 
Uniaxial compressive strenght in the 
residual zone Rc

r MPa 1.633 adopted value

Cohesion c0 MPa 4.16 calculated, 
c0 = Rc

0(1-sinφ0)/(2cosφ0)
Residual cohesion cr MPa 0.416 adopted value
Volumetric weight γ MN/m3 0.026 [7] 
Softening module M MPa 3843 calculated, Eq. (4)
Peak longitudinal compressive strain εg - 0.007 adopted value
Angle dilatancy ψ deg 10 adopted value

Dilatancy parameter 
β1 - 1.42 calculated, Eq. (6)
β2 - 1.4 [31] 

Mining 
conditions

Excavation depth H m 922.7 [7] 
Radius of excavation contour a m 3.65 [7] 
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Fig. 4. The effect of considering the softening of the rock medium in the post-failure stage on the course of 
stresses in the vicinity of the excavation

Fig. 5. The effect of applying a model of elastic-plastic medium with softening and elastic-plastic-brittle in the 
analysis of stresses around the excavation

Fig. 6. Relationship between stress and strain for the elastic-plastic-brittle medium
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	 crt RK += σσ 0  	 (35)

In the phase of a cracked three-phase medi-
um, the strength properties are described by the 
equation:

	 rt K σσ 0=  	 (36)

In the considerations with the use of the elas-
tic-plastic-brittle model, the dilatancy of the rock 
medium in the post-elastic stage was not consid-
ered. Other assumptions and input data for the 
calculations using this model were adopted at the 
same values as in the analysis using the elastic-
plastic model with softening.

Figure 5 shows that the radius of the plastic 
zone in the three-phase elastic-plastic-brittle me-
dium is Rp=6.63 m (for pa=0.1 MPa), and in the 
elastic-plastic medium with softening Rp=4.74 m 
(for pa=0.1 MPa). The second of these values (Rp)​​ 
is approx. 28.5% lower than the first one.

The results of the calculation of the range 
of the plastic zone with softening and residual 
plastic zone for the elastic-plastic medium with 
softening as well as the plastic zone and cracks 
for the elastic-plastic-brittle medium model de-
pending on the support resistance (pa) are shown 
in Figure 7. For the elastic-plastic medium model 
with softening, the growth of pa from 0.1 to 0.224 
MPa decreases the radius of the plastic zone from 
5.67 to 5.35 m (by approx. 5.6%). At pa ≥ 0.247 
MPa no residual zone is formed. For a model of 
elastic-plastic-brittle medium, the increase of pa 

from 0.01 to 0.1 MPa results in reduction in the 
radius of the plastic zone from 14.87 to 6.63 m 
(by approx. 55%). At a value of pa no lower than 
0.178 MPa no cracks zone is formed.

The effect of the impact of support load ca-
pacity on reducing the radius of inelastic zones 
is more significant in the rock mass with the fea-
tures of the elastic-plastic-brittle medium, than 
for the elastic-plastic medium with softening. 
When pa grows from 0.1 to 0.2 MPa, the radius 
of the plastic zone for these centers decreases by 
approx. 18.5% and 4.7%, respectively.

Figure 8 shows the effect of rock medium di-
latancy on radial displacement in the vicinity of 
the excavation. As a result of the increase of the 
dilatancy angle (ψ) from 0 to 30 deg, the radial 
displacement of the contour of the excavation in-
creases from 25 to 52.6 mm (by 105%; 2.1 times). 
The calculations indicate that dilatancy has the 
greatest impact on the radial displacement within 
the residual plastic zone.

The influence of the support load capacity val-
ues (in the range from 0 to 0.6 MPa) and the di-
latancy angle (in the range from 0 to 30 deg) on 
the radial displacement of the excavation contour 
is shown in Figure 9a. Increasing the value of the 
support load capacity is accompanied by a decrease 
in the displacement value. The influence of the di-
latancy angle on this dependence decreases with 
the increase of the support load capacity. Increas-
ing the value of the dilatancy angle is accompanied 
by a growth in the displacement value. 

Fig. 7. Changing the radius of inelastic zones around the excavation depending on the support load capacity
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The shaping of the displacement of the radial 
contour of the excavation in the elastic-plastic-
brittle rock medium depending on the value of the 
support load capacity is illustrated in Figure 9b. 
The δ parameter expresses the degree of increas-
ing the volume of rocks in the brittle zone. Great-
er support strength inhibits the deformation of the 
rock medium. The displacement of the contour 
of the excavation at δ=0 assumes, for the same 
support load capacity, higher values ​​compared to 
the solution for the elastic-plastic medium with 
weakening (for the angle of dilatancy ψ=0). The 
same conclusion can be formulated on the basis 
of a comparison of the curve for δ=0 (Fig. 9b) 
with the curve for the dilatation angle ψ=30 deg 
(Fig. 9a), but only up to the support load capac-
ity value approx. 0.06 MPa. In addition to this 
range, for a given support load capacity value, 
displacement of the contour of the excavation for 

a model of elastic-plastic medium with softening 
is slightly higher in relation to the model of the 
elastic-plastic-brittle medium.

The results of calculations of the static pres-
sure of the rock mass onto the support, depending 
on the support’s resistance, are shown in Figure 10. 

They indicate the high impact of support load 
capacity to the pressure exerted on the support by 
the rock massif with the features of the elastic-
plastic-brittle medium. The rate of pressure drop 
with the increase in the support load capacity value 
is the highest in the range of support load capac-
ity values from 0 to approx. 0.05 MPa. At a value 
of pa ≥ 0.178 MPa, no brittle zone is formed. The 
results for the elastic-plastic rock mass with soften-
ing and elastic-perfectly plastic show that the static 
pressure decreases mildly non-linearly with the in-
crease in support load capacity. At a value of pa ≥ 
0.247 MPa, a residual plastic zone is not formed. 

Fig. 8. The course of changes in the displacement of the radial rock mass around the excavation, 
taking into account the influence of dilatancy

Fig. 9. The influence of the support load capacity value on displacement of the excavation contour; 
a) elastic-plastic with material softening, b) elastic-plastic-brittle
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Fig. 10. The course of change in static pressure on the support as a function of the support load capacity

CONCLUSIONS

Taking into account the strain-softening of the 
rock medium, after reaching the limit strength, 
causes a longer distance from the contour of the 
excavation (deep into the rock mass) to the peak 
circumferential stress than in the case of omission 
the softening (elastic-perfectly plastic model). 
The size of the retraction is a function of geome-
chanical parameters of the rock, mining param-
eters (the depth of deposition and dimensions of 
the excavation) and the support load capacity. 
The increase in the angle of dilatancy significant-
ly affects the increase of radial displacements of 
the rock mass within the residual plastic zone. In 
turn, it has a slight influence on the displacement 
in the plastic zone with softening and in the elas-
tic zone. The influence of the dilatancy angle on 
the radial displacement of the mass in the vicinity 
of the excavation decreases with the increase of 
the support load capacity.

The obtained quantitative results of the state 
of stress, displacement and pressure of the rock 
mass on the support are valid only for the as-
sumed calculation data. They can also be used to 
quantify the effect of modeling inelastic zones on 
the state of stress and deformation in the vicinity 
of the excavation.

Under the given mining and geological condi-
tions, the pressure of the rock mass on the support 
should be estimated based on the rock medium 
model that best describes its features.

For the model of the elastic-plastic rock me-
dium with softening, formula for stress σRrez was 
obtained, regardless of the support load capac-
ity. When unevenness occurs, pa ≥σRrez, a residual 

plastic zone does not form in the vicinity of the 
excavation. Then the static pressure of the rock 
mass on the support is the result of supporting the 
rocks of the plastic zone on it. If pa<σRrez, a resid-
ual zone is created in the vicinity of the excava-
tion. The rocks in this zone, after detachment and 
based on the support, exert static pressure on it.
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