PL EN
EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES
 
Więcej
Ukryj
1
Department of Civil Engineering, Khomein Branch, Islamic Azad University, Khomein, Iran
 
 
Data publikacji: 01-03-2016
 
 
Adv. Sci. Technol. Res. J. 2016; 10(29):152-160
 
SŁOWA KLUCZOWE
STRESZCZENIE
This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs). For the carbon-nanotube reinforced composite (CNTRC) plate, uniform distribution (UD) and three types of functionally graded (FG) distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.
 
REFERENCJE (20)
1.
khavan H., Hosseini Hashemi Sh., Rokni Damavandi Taher H., Alibeigloo A., Vahabi Sh. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Comput. Mat. Sci. 44, 2009a, 968–978.
 
2.
Akhavan H., Hosseini Hashemi Sh., Rokni Damavandi Taher H., Alibeigloo A., Vahabi Sh. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Comput. Mat. Sci. 44, 2009b, 951–961.
 
3.
Baltacıoğlu A.K., Civalek Ö., Akgöz B., Demir F. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Pres. Ves. Pip. 88, 2011, 290–300.
 
4.
Buczkowski R., Torbacki,W. Finite element modelling of thick plates on two-parameter elastic foundation. Int. J. Num. Anal. Meth. Geo. 25, 2001, 1409–1427.
 
5.
Chucheepsakul S., Chinnaboon B. Plates on two-parameter elastic foundations with nonlinear boundary conditions by the boundary element method. Comput. Struct. 81, 2003, 2739–2748.
 
6.
Esawi A.M.K., Farag M.M. Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2007, 2394–2401.
 
7.
Fiedler B., Gojny F.H., Wichmann M.H.G., Nolte M.C.M., Schulte K. Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 2006, 3115–3125.
 
8.
Ferreira, A.J.M., Roque, C.M.C., Martins, P.A.L.S. Analysis of Composite Plates Using Higher-Order Shear Deformation Theory and a Finite Point Formulation Based on the Multiquadric Radial Basis Function Method. Composites Part B. 34, 2003, 627–636.
 
9.
Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A. and Loghman, A. Electro-thermomechanical behaviors of FGPM spheres using analytical method and ANSYS software. J. Appl. Math. Model., 36, 2011, 139–157.
 
10.
Ghorbanpour Arani, A., Kolahchi, R., Vossough, H. Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory. Physica B 407, 2012, 4458–4465.
 
11.
Hui-Shen, Sh. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 2009, 9–19.
 
12.
Hui-Shen, Sh., Chen-Li, Zh. Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Comput. Mat. Sci. 50, 2011, 1022–1029.
 
13.
Heydari, M.M., Kolahchi, R., Heydari, M., Abbasi, A. Exact solution for transverse bending analysis of embedded laminated Mindlin plate. Struct. Eng. Mech. 49(5), 2014, 661–672.
 
14.
Reddy, J.N. A Simple Higher Order Theory for Laminated Composite Plates. J. Appl. Mech. 51, 1984, 745–752.
 
15.
Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 1945, 69–77.
 
16.
Salvetat-Delmotte, J.P., Rubio, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 2002, 1729–1734.
 
17.
Sladek, J., Sladek, V., Mang, H.A. Meshless Local Boundary Integral Equation Method for Simply Supported and Clamped Plates Resting on Elastic Foundation. Comp. Meth. In Appl. Mech. and Eng. 191(51), 2002, 5943–5959.
 
18.
Swaminathan K., Ragounadin D. Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates. Comp. Struc. 64, 2004, 405–417.
 
19.
Zenkour A.M. Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Appl. Math. Model. 27, 2003, 515–534.
 
20.
Zhu P., Lei Z.X., Liew K.M. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 2011, 1450–1460.
 
Journals System - logo
Scroll to top